【題目】如圖,已知菱形ABCD,對(duì)角線AC、BD相交于點(diǎn)O,AC=6,BD=8.點(diǎn)E是AB邊上一點(diǎn),求作矩形EFGH,使得點(diǎn)F、G、H分別落在邊BC、CD、AD上.設(shè) AE=m.
(1)如圖①,當(dāng)m=1時(shí),利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫作法)
(2)寫出矩形EFGH的個(gè)數(shù)及對(duì)應(yīng)的m的取值范圍.
【答案】(1)見解析;(2)①當(dāng)m=0時(shí),存在1個(gè)矩形EFGH;②當(dāng)0<m<時(shí),存在2個(gè)矩形EFGH;③當(dāng)m=時(shí),存在1個(gè)矩形EFGH;④當(dāng)<m≤時(shí),存在2個(gè)矩形EFGH;⑤當(dāng)<m<5時(shí),存在1個(gè)矩形EFGH;⑥當(dāng)m=5時(shí),不存在矩形EFGH.
【解析】
(1)以O點(diǎn)為圓心,OE長為半徑畫圓,與菱形產(chǎn)生交點(diǎn),順次連接圓O與菱形每條邊的同側(cè)交點(diǎn)即可;
(2)分別考慮以O為圓心,OE為半徑的圓與每條邊的線段有幾個(gè)交點(diǎn)時(shí)的情形,共分五種情況.
(1)如圖①,如圖②(也可以用圖①的方法,取⊙O與邊BC、CD、AD的另一個(gè)交點(diǎn)即可)
(2)∵O到菱形邊的距離為,當(dāng)⊙O與AB相切時(shí)AE=,當(dāng)過點(diǎn)A,C時(shí),⊙O與AB交于A,E兩點(diǎn),此時(shí)AE=×2=,根據(jù)圖像可得如下六種情形:
①當(dāng)m=0時(shí),如圖,存在1個(gè)矩形EFGH;
②當(dāng)0<m<時(shí),如圖,存在2個(gè)矩形EFGH;
③當(dāng)m=時(shí),如圖,存在1個(gè)矩形EFGH;
④當(dāng)<m≤時(shí),如圖,存在2個(gè)矩形EFGH;
⑤當(dāng)<m<5時(shí),如圖,存在1個(gè)矩形EFGH;
⑥當(dāng)m=5時(shí),不存在矩形EFGH.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】入學(xué)考試前,某語文老師為了了解所任教的甲、乙兩班學(xué)生假期向的語文基礎(chǔ)知識(shí)背誦情況,對(duì)兩個(gè)班的學(xué)生進(jìn)行了語文基礎(chǔ)知識(shí)背誦檢測(cè),滿分100分.現(xiàn)從兩個(gè)班分別隨機(jī)抽取了20名學(xué)生的檢測(cè)成績進(jìn)行整理,描述和分析(成績得分用x表示,共分為五組:
A.0≤x<80,B.80≤x<85,C.85≤x<90,D.90≤x<95,E.95≤x<100),下面給出了部分信息:
甲班20名學(xué)生的成績?yōu)椋?/span>
甲組 | 82 | 85 | 96 | 73 | 91 | 99 | 87 | 91 | 86 | 91 |
87 | 94 | 89 | 96 | 96 | 91 | 100 | 93 | 94 | 99 |
乙班20名學(xué)生的成績?cè)?/span>D組中的數(shù)據(jù)是:93,91,92,94,92,92,92
甲、乙兩班抽取的學(xué)生成績數(shù)據(jù)統(tǒng)計(jì)表
班級(jí) | 甲組 | 乙組 |
平均數(shù) | 91 | 92 |
中位數(shù) | 91 | b |
眾數(shù) | c | 92 |
方差 | 41.2 | 27.3 |
根據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中a,b,c的值:a= ;b= ;c= ;
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為甲、乙兩個(gè)班中哪個(gè)班的學(xué)生基礎(chǔ)知識(shí)背誦情況較好?請(qǐng)說明理由(一條理由即可);
(3)若甲、乙兩班總?cè)藬?shù)為125,且都參加了此次基礎(chǔ)知識(shí)檢測(cè),估計(jì)此次檢測(cè)成績優(yōu)秀(x≥95)的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 是邊長為6cm的等邊三角形,被一平行于BC 的矩形所截,邊長被截成三等份,則圖中陰影部分的面積為 ( )
A.4cm2B.2cm2C.3cm2D.4cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)一班和二班各派出10名學(xué)生參加一分鐘跳繩比賽,成績?nèi)缦卤恚?/span>
跳繩成績(個(gè)) | 132 | 133 | 134 | 135 | 136 | 137 |
一班人數(shù)(人) | 1 | 0 | 1 | 5 | 2 | 1 |
二班人數(shù)(人) | 0 | 1 | 4 | 1 | 2 | 2 |
(1)兩個(gè)班級(jí)跳繩比賽成績的眾數(shù)、中位數(shù)、平均數(shù)、方差如下表:
眾數(shù) | 中位數(shù) | 平均數(shù) | 方差 | |
一班 | a | 135 | 135 | c |
二班 | 134 | b | 135 | 1.8 |
表中數(shù)據(jù)a= ,b= ,c= ;
(2)請(qǐng)用所學(xué)的統(tǒng)計(jì)知識(shí),從兩個(gè)角度比較兩個(gè)班跳繩比賽的成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,CD⊥AB于點(diǎn)D,CD=3.點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)P作PQ∥AB交BC于點(diǎn)Q,過點(diǎn)P作AC的垂線,過點(diǎn)Q作AC的平行線,兩線交于點(diǎn)E.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段PQ的長.(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)E落在邊AB上時(shí),求t的值.
(3)當(dāng)△PQE與△ACD重疊部分圖形是四邊形時(shí),直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,弦AB、CD相交于點(diǎn)E,且AB=CD,∠BED=α(0°<α<180°).有下列結(jié)論:①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=.其中一定成立的個(gè)數(shù)為( 。
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(知識(shí)回顧)
我們把連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線,并且有:三角形的中位線平行于第三邊,并且等于第三邊的一半.
(定理證明)
將下列的定理證明補(bǔ)充完整:
已知:如圖①,在△ABC中,點(diǎn)D、E分別是邊AB、AC中點(diǎn),連結(jié)DE.
求證:
證明:
(定理應(yīng)用)
如圖②,在△ABC中,AB=10,∠ABC=60°,點(diǎn)P、Q分別是邊AC、BC的中點(diǎn),連結(jié)PQ.
(1)線段PQ的長為 .
(2)以點(diǎn)C為一個(gè)端點(diǎn)作線段CD(CD與AB不平行),連結(jié)AD,取AD的中點(diǎn)M,連結(jié)PM、QM.
①在圖②中補(bǔ)全圖形.
②當(dāng)∠PQM=∠PMQ時(shí),求CD的長.
③在②的條件下,當(dāng)△PQM面積最大時(shí),直接寫出∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)P在△ABC內(nèi),且滿足∠APB=∠APC(如下圖),∠APB+∠BAC=180°,
(1)求證:△PAB∽△PCA:
(2)如下圖,如果∠APB=120°,∠ABC=90°求的值;
(3)如圖,當(dāng)∠BAC=45°,△ABC為等腰三角形時(shí),求tan∠PBC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com