18.如圖,若∠DAE=∠E,∠B=∠D,那么AB∥DC嗎?請在下面的解答過程中填空或在括號內(nèi)填寫理由.
解:理由如下:
∵∠DAE=∠E,(已知)
∴AD∥BE,(內(nèi)錯角相等,兩直線平行)
∴∠D=∠DCE.(兩直線平行,內(nèi)錯角相等)
又∵∠B=∠D,(已知)
∴∠B=∠DCE.( 等量代換)
∴AB∥DC,(同位角相等,兩直線平行)

分析 先根據(jù)題意得出AD∥BE,故可得出∠D=∠DCE,再由∠B=∠D得出∠B=∠DCE,進(jìn)而可得出結(jié)論.

解答 解:∵∠DAE=∠E,(已知)
∴AD∥BE,(內(nèi)錯角相等,兩直線平行)
∴∠D=∠DCE.( 兩直線平行,內(nèi)錯角相等)
又∵∠B=∠D,(已知)
∴∠B=DCE.( 等量代換)
∴AB∥DC,(同位角相等,兩直線平行)
故答案為:已知;AD,內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等;已知;∠DCE;AB,DC.

點評 本題考查的是平行線的判定與性質(zhì),熟知平行線的判定定理是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.拋物線y=ax2+bx+3經(jīng)過點(2,4),則代數(shù)式4a+2b的值為1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,在長方形ABCD中,AB=6厘米,BC=12厘米,點P沿AB邊從點A開始向點B以1厘米/秒的速度移動,點Q沿BC從點B開始向點C以2厘米/秒的速度移動,如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6).
(1)當(dāng)PB=2厘米時,求點P移動多少秒?
(2)t為何值時,△PBQ為等腰直角三角形?
(3)求四邊形PBQD的面積,并探究一個與計算結(jié)果有關(guān)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.閱讀下面的問題,然后回答,
分解因式:x2+2x-3,
解:原式
=x2+2x+1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
上述因式分解的方法稱為配方法.請體會配方法的特點,用配方法分解因式:
(1)x2-4x+3
(2)4x2+12x-7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,直線a、b都與直線c相交,有下列條件:①∠1=∠2;②∠3+∠8=180°;③∠4=∠5;④∠6+∠7=180°.其中,能夠判斷a∥b的是( 。
A.①②B.②③④C.①③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為4,∠B=135°,則$\widehat{AC}$的長為2π.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.甲、乙兩人參加某商場的招聘測試,測試由語言和商品知識兩個項目組成,他們各自的成績(百分制)如下表所示.該商場根據(jù)成績在兩人之間錄用了乙,則本次招聘測試中權(quán)重較大的是語言項目.
應(yīng)聘者語言商品知識
7080
8070

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.如圖,圓錐的底面半徑r為6cm,高h(yuǎn)為8cm,則圓錐的側(cè)面積為60πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.9的算術(shù)平方根為( 。
A.9B.±9C.3D.±3

查看答案和解析>>

同步練習(xí)冊答案