【題目】 已知,,上的一個動點,將沿所在直線折疊,使點落在點處.

(1)如圖1,若點中點,連接 . 寫出求證:四邊形平行四邊形.

(2)如圖2,若,過延長線于點,.

【答案】(1)BD=,BP= 2證明見解析;(2)

【解析】

試題分析:(1)分別在RtABC,RtBDC中,求出AB、BD即可解決問題;

想辦法證明DPBC,DP=BC即可;

(2)如圖2中,作DNAB于N,PEAC于E,延長BD交PA于M.設(shè)BD=AD=x,則CD=4﹣x,在RtBDC中,可得x2=(4﹣x)2+22,推出x=,推出DN=,由BDN∽△BAM,可得,由此求出AM,由ADM∽△APE,可得,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解決問題.

試題解析:(1)在RtABC中,BC=2,AC=4,

AB=,

AD=CD=2,

BD=,

由翻折可知,BP=BA=2

如圖1中,

∵△BCD是等腰直角三角形,

∴∠BDC=45°,

∴∠ADB=BDP=135°,

∴∠PDC=135°﹣45°=90°,

∴∠BCD=PDC=90°,

DPBC,PD=AD=BC=2,

四邊形BCPD是平行四邊形.

(2)如圖2中,作DNAB于N,PEAC于E,延長BD交PA于M.

設(shè)BD=AD=x,則CD=4﹣x,

在RtBDC中,BD2=CD2+BC2,

x2=(4﹣x)2+22

x=,

DB=DA,DNAB,

BN=AN=,

在RtBDN中,DN=

BDN∽△BAM,可得,

AM=2,

AP=2AM=4,

ADM∽△APE,可得

,

AE=,

EC=AC﹣AE=4﹣=,

易證四邊形PECH是矩形,

PH=EC=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點A、B的坐標(biāo)分別為(1,0)、(4,0).

(1)點C的坐標(biāo)是;
(2)將△ABC沿x軸向右平移,當(dāng)點C落在直線y=2x﹣6上時,線段AC掃過的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為了了解本班全體同學(xué)在閱讀方面的情況,采取全面調(diào)查的方法,從喜歡閱讀“科普常識、小說、漫畫、營養(yǎng)美食”等四類圖書中調(diào)查了全班學(xué)生的閱讀情況(要求每位學(xué)生只能選擇一種自己喜歡閱讀的圖書類型)根據(jù)調(diào)查的結(jié)果繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)該班喜歡閱讀科普常識的同學(xué)有人,該班的學(xué)生人數(shù)有人;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,表示“漫畫”類所對圓心角是度,喜歡閱讀“營養(yǎng)美食”類圖書的人數(shù)占全班人數(shù)的百分比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E、F分別是邊BC、AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關(guān)系和位置關(guān)系;(不要求證明)
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷予以證明;

(3)如圖3,若點E、F分別是BC、AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2的正方形OABC放在平面直角坐標(biāo)系中,O是原點,點A的橫坐標(biāo)為1,則點C的坐標(biāo)為(
A.(﹣2,1)
B.(﹣1,2)
C.( ,﹣1)
D.(﹣ ,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( 。
A.x2x3=x6
B.(x32=x5
C.(xy23=x3y6
D.x6÷x3=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程3x2m6的解是xm,則m的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(0)的圖象如圖,給出下列四個結(jié)論:4ac﹣b20;3b+2c0;4a+c2b;m(am+b)+ba(m1),其中結(jié)論正確的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習(xí)冊答案