【題目】已知點P是矩形ABCD邊AB上的任意一點(與點A、B不重合)

(1)如圖,現(xiàn)將PBC沿PC翻折得到PEC;再在AD上取一點F,將PAF沿PF翻折得到PGF,并使得射線PE、PG重合,試問FG與CE的位置關系如何,請說明理由;

(2)在(1)中,如圖,連接FC,取FC的中點H,連接GH、EH,請你探索線段GH和線段EH的大小關系,并說明你的理由;

(3)如圖,分別在AD、BC上取點F、C,使得APF=BPC,與(1)中的操作相類似,即將PAF沿PF翻折得到PFG,并將沿翻折得到,連接,取的中點H,連接GH、EH,試問(2)中的結論還成立嗎?請說明理由.

【答案】(1)FG∥CE,在矩形ABCD中,∠A=∠B=90°,由題意得,∠G=∠A=90°,∠PEC=∠B=90°,∴∠GEC=90°,∴∠G=∠GEC,∴FG∥CE。

(2)GH=EH。延長GH交CE于點M,由(1)得,F(xiàn)G∥CE,∴∠GFH=∠MCH,∵H為CF的中點,∴FH=CH,又∵∠GHF=∠MHC,∴△GFH≌△MHC,∴GH=HM=,∵∠GEC=90°,∴EH=,∴GH=EH。

(3)(2)中的結論還成立。取PF的中點M,的中點N,∵∠FGP=90°,M為PF的中點,∴,,,∴GM=PM,∴∠GPF=∠MGP,∴∠GMF=∠GPF+∠MGP=2∠GPF,∵H為的中點,M為PF的中點,∴,同理,,HN∥PF,∠,∴GM=HN,HM=EN!摺螱PF=∠FPA,,又,∴∠GPF=,∴∠GMF=∠,∵,HN∥PF,∴四邊形HMPN為平行四邊形,∴∠HMF=∠,∴∠GMH=∠HNE,∵GM=HN,HM=EN,∴△GMH≌△HNE,∴GH=HE。

【解析】(1)根據矩形的性質以及軸對稱的性質可以得到G=GEC=90°,根據內錯角相等,即可證明兩

條直線平行;

延長GH交CE于點M,結合(1)中的結論證明GFH≌△MHC,再運用直角三角形斜邊上的中線等于

斜邊的一半進行證明結論;

取PF的中點M,PC'的中點N,根據直角三角形的斜邊上的中線等于斜邊的一半以及三角形的中位線

定理得到平行四邊形,這幾個平行四邊形的性質證明要證明的兩條線段所在的兩個三角形全等,從而證明結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A、B兩地在數(shù)軸上相距20米,A地在數(shù)軸上表示的點為-8,小烏龜從A地出發(fā)沿數(shù)軸往B地方向前進,第一次前進1米,第二次后退2米,第三次再前進3米,第四次又后退4米,……,按此規(guī)律行進,(數(shù)軸的一個單位長度等于1米)

1)求B地在數(shù)軸上表示的數(shù);

2)若B地在原點的左側,經過第五次行進后小烏龜?shù)竭_點P,第六次行進后到達點Q,則點P和點Q到點A的距離相等嗎?請說明理由;

3)若B地在原點的右側,那么經過30次行進后,小烏龜?shù)竭_的點與點B之間的距離是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,點EBC的中點,連接AE并延長交DC的延長線于點F,連接BF

(1)求證:△ABE≌△FCE;

(2)AFAD,求證:四邊形ABFC是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的個數(shù)有(  )

①已知直角三角形的面積為2,兩直角邊的比為12,則斜邊長為;

②直角三角形的最大邊長為,最短邊長為1,則另一邊長為;

③在△ABC中,若∠A:∠B:∠C=1:56,則△ABC為直角三角形;

④等腰三角形面積為12,底邊上的高為4,則腰長為5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上的A、B兩點分別對應數(shù)字ab,且a、b滿足|4a-b|+a-42=0

1a= ,b= ,并在數(shù)軸上面出A、B兩點;

2)若點P從點A出發(fā),以每秒3個單位長度向x軸正半軸運動,求運動時間為多少時,點P到點A的距離是點P到點B距離的2倍;

3)數(shù)軸上還有一點C的坐標為30,若點P和點Q同時從點A和點B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點運動,P點到達C點后,再立刻以同樣的速度返回,運動到終點A.求點P和點Q運動多少秒時,PQ兩點之間的距離為4,并求此時點Q對應的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請根據圖中提供的信息,回答下列問題:

1)一個水瓶與一個水杯分別是多少元?

2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和20個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABCBA=BC,點DAB延長線上一點,DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動課上,老師準備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形.并用A種紙片一張,B種紙片張,C種紙片兩張拼成如圖2的大正方形.

(1)請用兩種不同的方法求圖2大正方形的面積.

方法1:   ;方法2:   

(2)觀察圖2,請你寫出下列三個代數(shù)式:(a+b)2,a2+b2,ab之間的等量關系.   

(3)根據(2)題中的等量關系,解決如下問題:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形分別沿著某條直線對稱得到圖形.若上述對稱關系保持不變,平移,使得四個圖形能夠圍成一個不重疊且無縫隙的正方形,此時點的坐標和正方形的邊長為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案