【題目】如圖,RtABC中,∠ACB=90°,AB的垂直平分線DEBC的延長(zhǎng)線于F,若∠F=30°,DE=1,EF的長(zhǎng)是_____.

【答案】3

【解析】

如圖,連接AF,根據(jù)等腰三角形的性質(zhì),得到AF=BF,求出∠AFE、∠B,得出∠BAC=30°,求出AD,根據(jù)∠FAC=∠AFE=30°,推出AD=DF,代入求出DF,再加上DE即可得到答案

連接AF,
∵AB的垂直平分線DE交于BC的延長(zhǎng)線于F,
∴AF=BF,

∴∠AFE=∠BFE=30°,
∵FE⊥AB,

∴∠B=∠FAB=90°-30°=60°,
∵∠ACB=90°,
∴∠BAC=30°,

∴∠FAC=60°-30°=30°,
∵DE=1,
∴AD=2DE=2,
∵∠FAD=∠AFD=30°,
∴DF=AD=2,

∴EF=DF+DE=3.
故答案為:3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 將其解集在數(shù)軸上表示出來,并寫出這個(gè)不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是一個(gè)嚴(yán)重缺水的國(guó)家.為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過6噸時(shí),水價(jià)為每噸2元,超過6噸時(shí),超過的部分按每噸3元收費(fèi).該市某戶居民5月份用水x噸,應(yīng)交水費(fèi)y元.

1)若0x≤6,請(qǐng)寫出yx的函數(shù)關(guān)系式.

2)若x6,請(qǐng)寫出yx的函數(shù)關(guān)系式.

3)如果該戶居民這個(gè)月交水費(fèi)27元,那么這個(gè)月該戶用了多少噸水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船在A處觀測(cè)燈塔C位于北偏西70°方向上,輪船從A處以每小時(shí)20海里的速度沿南偏西50°方向勻速航行,1小時(shí)后到達(dá)碼頭B處,此時(shí),觀測(cè)燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )

A.10 海里
B.10 海里
C.10 海里
D.20 海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:求若干個(gè)相同的有理數(shù)的除法運(yùn)算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3).類比有理數(shù)的乘方,我們把2÷2÷2記作2,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3),讀作“-3的圈4次方”一般地,把(a0)記作a,讀作“a的圈c次方” .關(guān)于除方,下列說法正確的個(gè)數(shù)是(

①任何非零數(shù)的圈2次方都等于1;②對(duì)于任何正整數(shù)c,1=1;③4=3④負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖像交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】與題干中平面圖形有相同對(duì)稱性的平面圖形是( ).

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°,∠B=15°,邊AB的垂直平分線交邊BC于點(diǎn)E,垂足為點(diǎn)D,取線段BE的中點(diǎn)F,聯(lián)結(jié)DF.求證:AC=DF.(說明:此題的證明過程需要批注理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABDC中,∠D=B=90°,點(diǎn)OBD的中點(diǎn),且AO平分∠BAC.

(1)求證:CO平分∠ACD;

(2)求證:OAOC;

(3)求證:AB+CD=AC.

查看答案和解析>>

同步練習(xí)冊(cè)答案