【題目】與題干中平面圖形有相同對稱性的平面圖形是( ).

A.
B.
C.
D.

【答案】B
【解析】解:題干中的圖形既是軸對稱圖形,又是中心對稱圖形
A是軸對稱圖形,不符合;
B既是軸對稱圖形,又是中心對稱圖形,符合;
C是軸對稱圖形,不符合;
D是軸對稱圖形,不符合;
故選B.
【考點精析】通過靈活運用軸對稱圖形和中心對稱及中心對稱圖形,掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,射線OM平分∠AOC,ON⊥OM.

(1)若∠BOD=70°,求∠AOM和∠CON的度數(shù);

(2)若∠BON=50°,求∠AOM和∠CON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AEABC的角平分線;ED平分∠AEBAB于點D;CAE=B.

(1)如果AC=3.5 cm,求AB的長度

(2)猜想:EDAB的位置關(guān)系,并證明你的猜想。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AB的垂直平分線DEBC的延長線于F,若∠F=30°,DE=1,EF的長是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD頂點A、B在x軸上,點D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點C(2,3),直線AD交雙曲線于點E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點F.

(1)若EB= OD,求點E的坐標(biāo);
(2)若四邊形ABCD為平行四邊形,求過A、D兩點的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,點D、E、F分別在BC、AB、AC上,∠EDF=∠B.
(1)如圖1,

求證:DECD=DFBE
(2)D為BC中點如圖2,

連接EF.
①求證:ED平分∠BEF;
②若四邊形AEDF為菱形,求∠BAC的度數(shù)及 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點C(1,0),直線y=﹣x+7與兩坐標(biāo)軸分別交于A,B兩點,D,E分別是AB,OA上的動點,則△CDE周長的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點P(2,3),點D是正比例函數(shù)圖象上的一點,過點Dy軸的垂線,垂足分別Q,DQ交反比例函數(shù)的圖象于點A,過點Ax軸的垂線,垂足為B,AB交正比例函數(shù)的圖于點E.

(1)求正比例函數(shù)解析式、反比例函數(shù)解析式.

(2)當(dāng)點D的縱坐標(biāo)為9時,求:點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案