【題目】如圖,在矩形ABCD中,EAD上一點(diǎn),PQ垂直平分BE,分別交ADBE、BC于點(diǎn)P、O、Q,連接BP、EQ

1)求證:△BOQ≌△EOP

2)求證:四邊形BPEQ是菱形;

3)若AB6FAB的中點(diǎn),OF+OB9,求PQ的長(zhǎng).

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3PQ

【解析】

1)先根據(jù)線段垂直平分線的性質(zhì)證明PB=PE,由ASA證明△BOQ≌△EOP;
2)由(1)得出PE=QB,證出四邊形ABGE是平行四邊形,再根據(jù)菱形的判定即可得出結(jié)論;
3)根據(jù)三角形中位線的性質(zhì)可得AE+BE=2OF+2OB=18,設(shè)AE=x,則BE=18-x,在RtABE中,根據(jù)勾股定理可得62+x2=18-x2,BE=10,得到OB=BE=5,設(shè)PE=y,則AP=8-y,BP=PE=y,在RtABP中,根據(jù)勾股定理可得62+8-y2=y2,解得y=,在RtBOP中,根據(jù)勾股定理可得PO=,由PQ=2PO即可求解.

1)證明:PQ垂直平分BE,

PBPE,OBOE,

四邊形ABCD是矩形,

ADBC,

∴∠PEOQBO,

BOQEOP中,

∴△BOQ≌△EOPASA),

2∵△BOQ≌△EOP

PEQB

ADBC,

四邊形BPEQ是平行四邊形,

QBQE

四邊形BPEQ是菱形;

3)解:OF分別為PQ,AB的中點(diǎn),

AE+BE2OF+2OB18,

設(shè)AEx,則BE18x,

Rt△ABE中,62+x2=(18x2,

解得x8,

BE18x10,

OBBE5,

設(shè)PEy,則AP8y,BPPEy,

Rt△ABP中,62+8y2y2,解得y,

Rt△BOP中,PO,

PQ2PO

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人勻速?gòu)耐坏攸c(diǎn)到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設(shè)甲乙兩人相距(米),甲行走的時(shí)間為(分),關(guān)于的函數(shù)函數(shù)圖像的一部分如圖所示.

(1)求甲行走的速度;

(2)在坐標(biāo)系中,補(bǔ)畫關(guān)于函數(shù)圖象的其余部分;

(3)問(wèn)甲、乙兩人何時(shí)相距360米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校260名學(xué)生參加植樹(shù)活動(dòng),活動(dòng)結(jié)束后學(xué)校隨機(jī)調(diào)查了部分學(xué)生每人的植樹(shù)棵數(shù),并繪制成如下的統(tǒng)計(jì)圖①和統(tǒng)計(jì)圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

()本次接受調(diào)查的學(xué)生人數(shù)為______,圖①中m的值為_______

()求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù);

()求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù),并根據(jù)樣本數(shù)據(jù),估計(jì)這260名學(xué)生共植樹(shù)多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑做⊙OBC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F

1)求證:FEAB;

2)填空:當(dāng)EF4時(shí),則DE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

某商場(chǎng)用8萬(wàn)元購(gòu)進(jìn)一批新款襯衫,上架后很快銷售一空,商場(chǎng)又緊急購(gòu)進(jìn)第二批這種襯衫,數(shù)量是第一次的2倍,但進(jìn)價(jià)漲了4/件,結(jié)果共用去17.6萬(wàn)元.

(1)該商場(chǎng)第一批購(gòu)進(jìn)襯衫多少件?

(2)商場(chǎng)銷售這種襯衫時(shí),每件定價(jià)都是58元,剩至150件時(shí)按八折出售,全部售完.售完這兩批襯衫,商場(chǎng)共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有四張完全相同的不透明卡片,其正面分別寫有數(shù)字-2-1,0,2,把這四張卡片背面朝上洗勻后放在桌面上.

1)隨機(jī)抽取一張卡片,求抽取的卡片上的數(shù)字為負(fù)數(shù)的概率;

2)先隨機(jī)抽取卡片,其上的數(shù)字作為點(diǎn)A的橫坐標(biāo);然后放回并洗勻,再隨機(jī)抽取一張卡片,其上的數(shù)字作為點(diǎn)A的縱坐標(biāo),試用畫樹(shù)狀圖或列表的方法求出點(diǎn)A在直線y=2x上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 甲、乙兩名同學(xué)參加少年科技創(chuàng)新選拔賽,六次比賽的成績(jī)?nèi)缦拢?/span>

甲:87 93 88 93 89 90

乙:85 90 90 96 89 a

1)甲同學(xué)成績(jī)的中位數(shù)是   ;

2)若甲、乙的平均成績(jī)相同,則a   

3)已知乙的方差是,如果要選派一名發(fā)揮穩(wěn)定的同學(xué)參加比賽,應(yīng)該選誰(shuí)?說(shuō)明理由.(方差公式:S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠為新型號(hào)電視機(jī)上市舉辦促銷活動(dòng),顧客每買一臺(tái)該型號(hào)電視機(jī),可獲得一次抽獎(jiǎng)機(jī)會(huì),該廠擬按10%設(shè)大獎(jiǎng),其余90%為小獎(jiǎng).

廠家設(shè)計(jì)的抽獎(jiǎng)方案是:在一個(gè)不透明的盒子中,放入10個(gè)黃球和90個(gè)白球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球,摸到黃球的顧客獲得大獎(jiǎng),摸到白球的顧客獲得小獎(jiǎng).

1)廠家請(qǐng)教了一位數(shù)學(xué)老師,他設(shè)計(jì)的抽獎(jiǎng)方案是:在一個(gè)不透明的盒子中,放入2個(gè)黃球和3個(gè)白球,這些球除顏色外都相同,攪勻后從中任意摸出2個(gè)球,摸到的2個(gè)球都是黃球的顧客獲得大獎(jiǎng),其余的顧客獲得小獎(jiǎng).該抽獎(jiǎng)方案符合廠家的設(shè)獎(jiǎng)要求嗎?請(qǐng)說(shuō)明理由;

2)下圖是一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,請(qǐng)你將轉(zhuǎn)盤分為2個(gè)扇形區(qū)域,分別涂上黃、白兩種顏色,并設(shè)計(jì)抽獎(jiǎng)方案,使其符合廠家的設(shè)獎(jiǎng)要求.(友情提醒:1.轉(zhuǎn)盤上用文字注明顏色和扇形的圓心角的度數(shù),2、結(jié)合轉(zhuǎn)盤簡(jiǎn)述獲獎(jiǎng)方式,不需說(shuō)明理由.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長(zhǎng)為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N20km.一輪船以36km/h的速度航行,上午1000A處測(cè)得燈塔C位于輪船的北偏西30°方向,上午1040B處測(cè)得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航向,何時(shí)到達(dá)海岸線?

(2)若輪船不改變航向,該輪船能否停靠在碼頭?請(qǐng)說(shuō)明理由(參考數(shù)據(jù): ≈1.4, ≈1.7)

查看答案和解析>>

同步練習(xí)冊(cè)答案