【題目】如圖,在3×3的正方形網(wǎng)格中,∠1+∠2+∠3+∠4+∠5=_____

【答案】225°

【解析】

首先判定ABC≌△AEF,ABD≌△AEH,可得∠5=BCA,4=BDA,然后可得∠1+5=1+BCA=90°,2+4=2+BDA=90°,然后可得∠1+2+3+4+5的值.

如圖:

ABCAEF中,

,

∴△ABC≌△AEF(SAS),

∴∠5=BCA,

∴∠1+5=1+BCA=90°,

ABDAEH中,

,

∴△ABD≌△AEH(SAS),

∴∠4=BDA,

∴∠2+4=2+BDA=90°,

∵∠3=45°,

∴∠1+2+3+4+5=90°+90°+45°=225°.

故答案為:225°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D、E、F分別是邊AB、BC、CA上的中點(diǎn),且AB=6cm,AC=8cm,則四邊形ADEF的周長(zhǎng)等于cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的一邊OA在x軸上,B點(diǎn)的坐標(biāo)為(4,3).雙曲線y= (x>0)過BC的中點(diǎn)P,交AB于點(diǎn)Q.
(1)求雙曲線的函數(shù)表達(dá)式及點(diǎn)Q的坐標(biāo);
(2)判斷線段AC與線段PQ之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①平角就是一條直線;②直線比射線線長(zhǎng);③平面內(nèi)三條互不重合的直線的公共點(diǎn)個(gè)數(shù)有0個(gè)、1個(gè)、2個(gè)或3個(gè);④連接兩點(diǎn)的線段叫兩點(diǎn)之間的距離;⑤兩條射線組成的圖形叫做角;⑥一條射線把一個(gè)角分成兩個(gè)角,這條射線是這個(gè)角的角平分線,其中正確的有(

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:ABCD,②ADBC,③∠B=∠D,④∠D=∠ACB,正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A(﹣1,0)、B(3,0),與y軸負(fù)半軸交于點(diǎn)C.

(1)若△ABD為等腰直角三角形,求此時(shí)拋物線的解析式;
(2)a為何值時(shí)△ABC為等腰三角形?
(3)在(1)的條件下,拋物線與直線y= x﹣4交于M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),動(dòng)點(diǎn)P從M點(diǎn)出發(fā),先到達(dá)拋物線的對(duì)稱軸上的某點(diǎn)E,再到達(dá)x軸上的某點(diǎn)F,最后運(yùn)動(dòng)到點(diǎn)N,若使點(diǎn)P運(yùn)動(dòng)的總路徑最短,求點(diǎn)P運(yùn)動(dòng)的總路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的三邊長(zhǎng)分別為30,48,50,以它的三邊中點(diǎn)為頂點(diǎn)組成第一個(gè)新三角形,再以第一個(gè)新三角形三邊中點(diǎn)為頂點(diǎn)組成第二個(gè)新三角形,如此繼續(xù),則第6個(gè)新三角形的周長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是甲、乙兩個(gè)圓柱形水槽的軸截面示意圖,乙槽中有一圓柱體鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上). 現(xiàn)將甲槽中的水勻速注入乙槽,甲、乙兩個(gè)水槽中水的深度y(厘米)與注水時(shí)間x(分鐘)之間的關(guān)系如圖2所示.圖2中折線ABC表示___________槽中水的深度與注水時(shí)間之間的關(guān)系(選填“甲”);②點(diǎn)B的縱坐標(biāo)表示的實(shí)際意義是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:線段AB=40cm.

(1)如圖①,點(diǎn)P沿線段AB自點(diǎn)A向點(diǎn)B3厘米/秒運(yùn)動(dòng),同時(shí)點(diǎn)Q線段BAB點(diǎn)向點(diǎn)A5厘米/秒運(yùn)動(dòng),問經(jīng)過幾秒后P、Q相遇?

(2)幾秒鐘后,P、Q相距16厘米?

(3)如圖②,AO=PO=8厘米,∠POB=40°,點(diǎn)P繞點(diǎn)O20/秒的速度順時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿直線BAB點(diǎn)向點(diǎn)A運(yùn)動(dòng),假若P、Q兩點(diǎn)能相遇,求Q運(yùn)動(dòng)的速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案