【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的一邊OA在x軸上,B點(diǎn)的坐標(biāo)為(4,3).雙曲線y= (x>0)過BC的中點(diǎn)P,交AB于點(diǎn)Q.
(1)求雙曲線的函數(shù)表達(dá)式及點(diǎn)Q的坐標(biāo);
(2)判斷線段AC與線段PQ之間的關(guān)系,并說明理由.

【答案】
(1)解:∵P為邊BC的中點(diǎn),則P(2,3),k=6,

函數(shù)表達(dá)式為y=

由圖可知點(diǎn)Q的橫坐標(biāo)為4,

把x=4代入y= ,

解得y= ,

則Q(4,


(2)解:∵Q(4, ),P(2,3);

∴BP=2,BC=4,BQ= ,BA=3;

=

由平行線分線段成比例定理可得PQ∥AC,且AC=2PQ


【解析】(1)求反比例函數(shù),找出該曲線上一點(diǎn)的坐標(biāo)即可;(2)找出線段比值是否相等可得PQ∥AC.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識(shí),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. 當(dāng)ABBC時(shí),它是菱形 B. 當(dāng)ACBD時(shí),它是菱形

C. 當(dāng)∠ABC90°時(shí),它是矩形 D. 當(dāng)ACBD時(shí),它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形網(wǎng)格中每個(gè)小正方形的邊長是1個(gè)單位長度).

(1)△A1B1C1是△ABC繞點(diǎn)逆時(shí)針旋轉(zhuǎn)度得到的,B1的坐標(biāo)是;
(2)求出線段AC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BE是線段AB的延長線,且∠CBE=∠A=∠C.

(1)由∠CBE=∠A可以判斷_________,根據(jù)是_____________;

(2)由∠CBE=∠C可以判斷_________,根據(jù)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線ABy軸于點(diǎn)A(0,1),交x軸于點(diǎn)B(3,0).直線x=1AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),在點(diǎn)D的上方,設(shè)P(1,n).

(1)求直線AB的解析式;

(2)求△ABP的面積(用含n的代數(shù)式表示);

(3)當(dāng)SABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+4與x軸、y軸分別交于點(diǎn)A、B,拋物線y=﹣ (x﹣m)2+n的頂點(diǎn)P在直線y=﹣x+4上,與y軸交于點(diǎn)C(點(diǎn)P、C不與點(diǎn)B重合),以BC為邊作矩形BCDE,且CD=2,點(diǎn)P、D在y軸的同側(cè).

(1)n=(用含m的代數(shù)式表示),點(diǎn)C的縱坐標(biāo)是(用含m的代數(shù)式表示);
(2)當(dāng)點(diǎn)P在矩形BCDE的邊DE上,且在第一象限時(shí),求拋物線對(duì)應(yīng)的函數(shù)解析式;
(3)直接寫出矩形BCDE有兩個(gè)頂點(diǎn)落在拋物線上時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列一元一次方程解應(yīng)用問題:

一個(gè)蓄水池裝有甲、乙兩個(gè)進(jìn)水管和丙一個(gè)出水管,單獨(dú)開放甲管3小時(shí)可注滿一池水,單獨(dú)開放乙管6小時(shí)可注滿一池水,單獨(dú)開放丙管4小時(shí)可放盡一池水.

(1)若同時(shí)開放甲、乙、丙三個(gè)水管,幾小時(shí)可注滿水池?

(2)若甲管先開放1小時(shí),而后同時(shí)開放乙、丙兩個(gè)水管,則共需幾小時(shí)可注滿水池?

(3)若甲管先開放1小時(shí)后關(guān)閉,而后同時(shí)開放乙、丙兩個(gè)水管,能注滿水池嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在3×3的正方形網(wǎng)格中,∠1+∠2+∠3+∠4+∠5=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,足球是世界上第一大運(yùn)動(dòng),你熱愛足球運(yùn)動(dòng)嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負(fù)一場得0分,一隊(duì)共踢了30場比賽,負(fù)了9場,共得47分,那么這個(gè)隊(duì)勝了( 。

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

同步練習(xí)冊(cè)答案