【題目】端午節(jié)期間,某品牌粽子經銷商銷售甲、乙兩種不同味道的粽子,已知一個甲種粽子和一個乙種粽子的進價之和為10元,每個甲種粽子的利潤是4元,每個乙種粽子的售價比其進價的2倍少1元,小王同學買4個甲種粽子和3個乙種粽子一共用了61元.
(1)甲、乙兩種粽子的進價分別是多少元?
(2)在(1)的前提下,經銷商統(tǒng)計發(fā)現(xiàn):平均每天可售出甲種粽子200個和乙種粽子150個.如果將兩種粽子的售價各提高1元,則每天將少售出50個甲種粽子和40個乙種粽子.為使每天獲取的利潤更多,經銷商決定把兩種粽子的價格都提高x元.在不考慮其他因素的條件下,當x為多少元時,才能使該經銷商每天銷售甲、乙兩種粽子獲取的利潤為1190元?
【答案】(1)甲種粽子的進價是6元/個,乙種粽子的進價是4元/個.(2)1元.
【解析】
試題分析:(1)設甲種粽子的進價是x元/個,乙種粽子的進價是y元/個,根據(jù)等量關系:一個甲種粽子和一個乙種粽子的進價之和為10元,小王同學買4個甲種粽子和3個乙種粽子一共用了61元,列出方程組即可求解;
(2)根據(jù)每天銷售甲、乙兩種粽子獲取的利潤為1190元,列出方程即可求解.
試題解析:(1)設甲種粽子的進價是x元/個,乙種粽子的進價是y元/個,則
,
解得.
故甲種粽子的進價是6元/個,乙種粽子的進價是4元/個.
(2)依題意有(4+x)+(3+x)(150-40x)=1190,
3x2-x-2=0,
解得x1=1,x2=-,
∵x>0,
∴x=1.
答:當x為1元時,才能使該經銷商每天銷售甲、乙兩種粽子獲取的利潤為1190元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+(a+2)x+2(a≠0)與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.
(1)求a的值;
(2)若PN:MN=1:3,求m的值;
(3)如圖2,在(2)的條件下,設動點P對應的位置是P1,將線段OP1繞點O逆時針旋轉得到OP2,旋轉角為α(0°<α<90°),連接AP2、BP2,求AP2+ BP2的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形.請解決下列問題:
(1)已知:如圖1,四邊形ABCD是等對角四邊形,∠A≠∠C,∠A=70°,∠B=75°,則∠C= °,∠D= °
(2)在探究等對角四邊形性質時:
小紅畫了一個如圖2所示的等對角四邊形ABCD,其中,∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立,請你證明該結論;
(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點均在網(wǎng)點上.按要求在圖①、圖②中以AB和BC為邊各畫一個等對角四邊形ABCD.
要求:四邊形ABCD的頂點D在格點上,所畫的兩個四邊形不全等.
(4)已知:在等對角四邊形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=9,AB=12,BC=15,P為BC邊上一動點,PG⊥AC于點G,PH⊥AB于點H.
(1)求證:四邊形AGPH是矩形;
(2)在點P的運動過程中,GH的長度是否存在最小值?若存在,請求出最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市舉行“傳承好家風”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機抽取了部分參賽征文,統(tǒng)計了他們的成績,并繪制了如下不完整的兩幅統(tǒng)計圖表.
請根據(jù)以上信息,解決下列問題:
(1)征文比賽成績頻數(shù)分布表中c的值是________;
(2)補全征文比賽成績頻數(shù)分布直方圖;
(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎征文的篇數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,將矩形折疊,使落在對角線上,折痕為,點落在點 處,若,則 ;
(2)小麗手中有一張矩形紙片,,.她準備按如下兩種方式進行折疊:
①如圖2,點在這張矩形紙片的邊上,將紙片折疊,使點落在邊上的點處,折痕為,若,求的長;
②如圖3,點在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點,分別落在,處,若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙二人同時從學校出發(fā),沿同一方向勻速行走,后,甲加快速度繼續(xù)勻速行走(加速的時間忽略不計),乙始終勻速行走,兩人都走了.兩人在行走過程中得到如下表所示的信息:
離開學校的時間 | ||||
甲離學校的距離 | ||||
乙離學校的距離 |
(1)根據(jù)題意,甲出發(fā)時的速度為_______,乙的速度為______;
(2)求表中的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:頂點、開口大小相同,開口方向相反的兩個二次函數(shù)互為“反簇二次函數(shù)”.
(1)已知二次函數(shù)y=﹣(x﹣2)2+3,則它的“反簇二次函數(shù)”是__________________;
(2)已知關于x的二次函數(shù)y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的圖像經過點(1,1).若y1+y2與y1互為“反簇二次函數(shù)”.求函數(shù)y2的表達式,并直接寫出當0≤x≤3時,y2的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com