【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是邊BC的中點(diǎn),聯(lián)結(jié)AD.過點(diǎn)C作CE⊥AD于點(diǎn)E,聯(lián)結(jié)BE.
(1)求證:BD2=DEAD;
(2)如果∠ABC=∠DCE,求證:BDCE=BEDE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)證明△CDE∽△ADC推出,可得CD2=DEDA即可解決問題.
(2)利用相似三角形的性質(zhì)首先證明AC=BE,再證明△ACE∽△CDE,可得,可得即可解決問題.
解:
(1)證明:如圖1中,
∵CE⊥AD,
∴∠CED=∠ACD=90,
∵∠CDE=∠ADC,
∴△CDE∽△ADC
∴,
∴CD2=DEDA,
∵DB=CD,
∴∴BD2=DEDA.
(2)解:如圖2中,
∵BD2=DEDA,
∴,
∵∠CDE=∠ADB,
∴△BDE∽△ADB,
∴∠DEB=∠ABC,
∵∠ABD=∠ECD,
∴∠BED=∠BCE,
∵∠EBD=∠CBE,
∴△EBD∽△CBE,
∴,
∴BE2=BDBC,
∵CD=BD,
∴BE2=2CD2,
∵∠DCE+∠ACE=90,∠CAD+∠ACE=90,
∴∠CAD=∠ECD=∠ABC,
∵∠ACD=∠BCA,
∴△ACD∽△BCA,
∴,
∴AC2=CDCB=2CD2,
∴AC=BE,
∵△ACE∽△CDE,
∴,
∴,
∴BDCE=BEDE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓O中,弦AC,BD相交于點(diǎn)M,且∠A=∠B
(1)求證:AC=BD;
(2)若OA=4,∠A=30°,當(dāng)AC⊥BD時(shí),求弧CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)P,直線BF與AD延長(zhǎng)線交于點(diǎn)F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線;
(2)若CD=2,BP=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(-4,0),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P與y軸的負(fù)半軸交于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論;
(3)在第二象限中是否存在的一點(diǎn)Q,使得以A,O,Q為頂點(diǎn)的三角形與△OBC相似.若存在,請(qǐng)求出所有滿足的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OC=3.
(1)求拋物線的解析式.
(2)若點(diǎn)D(2,2)是拋物線上一點(diǎn),那么在拋物線的對(duì)稱軸上,是否存在一點(diǎn)P,使得△BDP的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
注:二次函數(shù)(≠0)的對(duì)稱軸是直線=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)O為AB中點(diǎn),點(diǎn)P為直線BC上的動(dòng)點(diǎn)(不與B、C重合),連接OC、OP,將OP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°,得到線段PQ,連接BQ,若∠BPO=15°,BP=4,則BQ的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),A(﹣5,0),與y軸交于C(0,﹣5),并且對(duì)稱軸x=﹣3.
(1)求拋物線的解析式;
(2)P在x軸上方的拋物線上,過P的直線y=x+m與直線AC交于點(diǎn)M,與y軸交于點(diǎn)N,求PM+MN的最大值;
(3)點(diǎn)D為拋物線對(duì)稱軸上一點(diǎn),
①當(dāng)△ACD是以AC為直角邊的直角三角形時(shí),求D點(diǎn)坐標(biāo);
②若△ACD是銳角三角形,求點(diǎn)D的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)求證:△ABC為直角三角形;
(3)如圖,動(dòng)點(diǎn)E,F同時(shí)從點(diǎn)A出發(fā),其中點(diǎn)E以每秒2個(gè)單位長(zhǎng)度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒個(gè)單位長(zhǎng)度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)F停止運(yùn)動(dòng)時(shí),點(diǎn)E隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,連結(jié)EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.當(dāng)點(diǎn)F在AC上時(shí),是否存在某一時(shí)刻t,使得△DCO≌△BCO?(點(diǎn)D不與點(diǎn)B重合)若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點(diǎn)的直線與反比例函數(shù)()的圖象交于,兩點(diǎn),點(diǎn)在第一象限.點(diǎn)在軸正半軸上,連結(jié)交反比例函數(shù)圖象于點(diǎn).為的平分線,過點(diǎn)作的垂線,垂足為,連結(jié).若是線段中點(diǎn),的面積為4,則的值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com