【題目】某廠為了檢驗(yàn)甲、乙兩車間生產(chǎn)的同一種零件的直徑的合格情況,隨機(jī)各抽取了10個(gè)樣品進(jìn)行檢測,已知零件的直徑均為整數(shù),整理數(shù)據(jù)如下:(單位:

170174

175179

180184

185189

甲車間

1

3

4

2

乙車間

0

6

2

2

1)分別計(jì)算甲、乙兩車間生產(chǎn)的零件直徑的平均數(shù);

2)直接說出甲、乙兩車間生產(chǎn)的零件直徑的中位數(shù)都在哪個(gè)小組內(nèi),眾數(shù)是否在其相應(yīng)的小組內(nèi)?

3)若該零件的直徑在的范圍內(nèi)為合格,甲、乙兩車間哪一個(gè)車間生產(chǎn)的零件直徑合格率高?

【答案】(1), ;(2)甲中位數(shù)在180-184組,乙中位數(shù)在175-179組,眾數(shù)不一定在相應(yīng)的小組內(nèi);(3)乙車間的合格率高

【解析】

1)根據(jù)加權(quán)平均數(shù)的計(jì)算公式直接計(jì)算即可;

2)根據(jù)中位數(shù)、眾數(shù)的定義得出答案;

3)分別計(jì)算兩車間的合格率比較即可得出答案。

解:(1

2)甲中位數(shù)在180-184組,乙中位數(shù)在175-179組,眾數(shù)不一定在相應(yīng)的小組內(nèi)

3)甲車間合格率:;乙車間合格率:;

乙車間的合格率高

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20141月,國家發(fā)改委出臺(tái)指導(dǎo)意見,要求2015年底前,所有城市原則上全面實(shí)行居民階梯水價(jià)制度.小明為了解市政府調(diào)整水價(jià)方案的社會(huì)反響,隨機(jī)訪問了自己居住小區(qū)的部分居民,就每月每戶的用水量調(diào)價(jià)對(duì)用水行為改變兩個(gè)問題進(jìn)行調(diào)查,并把調(diào)查結(jié)果整理繪制成下面的統(tǒng)計(jì)圖(圖1,圖2).

小明發(fā)現(xiàn)每月每戶的用水量在5m3-35m3之間,有8戶居民對(duì)用水價(jià)格調(diào)價(jià)漲幅抱無所謂,不會(huì)考慮用水方式的改變,根據(jù)小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:

(Ⅰ)n= ,小明調(diào)查了 戶居民,并補(bǔ)全圖2;

(Ⅱ)每月每戶用水量的中位數(shù)和眾數(shù)分別落在什么范圍?

(Ⅲ)如果小明所在小區(qū)有1800戶居民,請你估計(jì)視調(diào)價(jià)漲幅采取相應(yīng)的用水方式改變的居民戶數(shù)有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)邊長分別為a,b(a>b)的正方形連在一起,三點(diǎn)C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點(diǎn)E.若OB2﹣BE2=10,則k的值是(  )

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】說明理由

如圖,∠1+∠2=230°,b∥c, 則∠1、∠2、∠3、∠4各是多少度?

解:∵ ∠1=∠2 (_________________________)

∠1+∠2=230°

∴∠1 =∠2 =________(填度數(shù))

bc

∴∠4 =∠2= ________(填度數(shù))

( )

∠2 +∠3 =180° ( )

∴∠3 =180°-∠2 =_________(填度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A2a23ab2a1B=-a2ab1.

(1) |a+1| b- 22 0 ,求4A(3A2B)的值;

(2)(1)中代數(shù)式的值與a的取值無關(guān),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知∠MON=140°,AOC與∠BOC互余,OC平分∠MOB,

(1)在圖1中,若∠AOC=40°,則∠BOC= °,NOB= °.

(2)在圖1中,設(shè)∠AOC=α,NOB=β,請?zhí)骄?/span>αβ之間的數(shù)量關(guān)系( 必須寫出推理的主要過程,但每一步后面不必寫出理由);

(3)在已知條件不變的前提下,當(dāng)∠AOB繞著點(diǎn)O順時(shí)針轉(zhuǎn)動(dòng)到如圖2的位置,此時(shí)αβ之間的數(shù)量關(guān)系是否還成立?若成立,請說明理由;若不成立,請直接寫出此時(shí)αβ之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電話計(jì)費(fèi)問題,下表中有兩種移動(dòng)電話計(jì)費(fèi)方式:

溫馨揭示:方式一:月使用費(fèi)固定收(月收費(fèi):38/月);主叫不超限定時(shí)間不再收費(fèi)(80分鐘以內(nèi),包括80分鐘);主叫超時(shí)部分加收超時(shí)費(fèi)(超過部分0.15/);被叫免費(fèi)。

方式二:月使用費(fèi)0元(無月租費(fèi));主叫限定時(shí)間0分鐘;主叫每分鐘0.35/;被叫免費(fèi)。

1)設(shè)一個(gè)月內(nèi)用移動(dòng)電話主叫時(shí)間為,方式一計(jì)費(fèi)元,方式二計(jì)費(fèi)元。寫出關(guān)于的函數(shù)關(guān)系式。

2)在平面直角坐標(biāo)系中畫出(1)中的兩個(gè)函數(shù)圖象,記兩函數(shù)圖象交點(diǎn)為點(diǎn),則點(diǎn)的坐標(biāo)為_____________________(直接寫出坐標(biāo),并在圖中標(biāo)出點(diǎn))。

3)根據(jù)(2)中函數(shù)圖象,請直接寫出如何根據(jù)每月主叫時(shí)間選擇省錢的計(jì)費(fèi)方式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖∠AOB是直角,在∠AOB外作射線OC,OM平分∠AOCON平分∠BOC.

(1)若∠AOC=38°,求∠MON的度數(shù);

(2)若∠AOC=,試說明∠MON的大小與無關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)鏈接:

“轉(zhuǎn)化、化歸思想”是數(shù)學(xué)學(xué)習(xí)中常用的一種探究新知、解決問題的基本的數(shù)學(xué)思想方法,通過“轉(zhuǎn)化、化歸”通常可以實(shí)現(xiàn)化未知為已知,化復(fù)雜為簡單,從而使問題得以解決.

1)問題背景:已知:△ABC.試說明:∠A+B+C=180°.

問題解決:(填出依據(jù))

解:(1)如圖①,延長ABE,過點(diǎn)BBFAC.

BFAC(作圖)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定義)

∴∠A+ABC+C=180°(等量代換)

小結(jié)反思:本題通過添加適當(dāng)?shù)妮o助線,把三角形的三個(gè)角之和轉(zhuǎn)化成了一個(gè)平角,利用平角的定義,說明了數(shù)學(xué)上的一個(gè)重要結(jié)論“三角形的三個(gè)內(nèi)角和等于180°.

2)類比探究:請同學(xué)們參考圖②,模仿(1)的解決過程試說明“三角形的三個(gè)內(nèi)角和等于180°”

3)拓展探究:如圖③,是一個(gè)五邊形,請直接寫出五邊形ABCDE的五個(gè)內(nèi)角之和∠A+B+C+D+E= .

查看答案和解析>>

同步練習(xí)冊答案