【題目】如圖兩摞規(guī)格完全相同的課本整齊地疊放在講臺(tái)上請(qǐng)根據(jù)圖中所給出的數(shù)據(jù)信息,回答下列問題:
(1)每本課本的厚度為 cm.
(2)若有一摞上述規(guī)格的課本x本整齊地疊放在講臺(tái)上請(qǐng)用含x的代數(shù)式表示出這摞課本的頂部距離地面的高度;
(3)當(dāng)x=42時(shí),求課本的頂部距離地面的高度.
【答案】(1)0.5;(2)高出地面的距離為(85+0.5x)cm;(3)余下的課本的頂部距離地面的高度106cm.
【解析】
(1)根據(jù)圖中所畫可以得出3本課本的高度為(88-86.5)cm,從而進(jìn)一步求出每本高度即可;
(2)首先求出課桌的高度,然后加上x本書的高度0.5xcm即可;
(3)將x=42代入(2)中的代數(shù)式計(jì)算即可.
(1)書的厚度為:(88﹣86.5)÷(6﹣3)=0.5cm;
故答案為:0.5;
(2)∵x本書的高度為0.5xcm,課桌的高度為85cm,
∴高出地面的距離為(85+0.5x)cm;
(3)當(dāng)x=42時(shí),85+0.5x=106.
答:余下的課本的頂部距離地面的高度106cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖AB是⊙O的直徑,AC是弦,直線EF是過點(diǎn)C的⊙O的切線,AD⊥EF于點(diǎn)D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)度為5的動(dòng)線段分別與坐標(biāo)系橫軸、縱軸的正半軸交于點(diǎn)、點(diǎn),點(diǎn)和點(diǎn)關(guān)于對(duì)稱,連接,過點(diǎn)作軸的垂線段,交軸于點(diǎn)
(1)移動(dòng)點(diǎn),發(fā)現(xiàn)在某一時(shí)刻,和以點(diǎn)為頂點(diǎn)的三角形相似,求這一時(shí)刻點(diǎn)的坐標(biāo);
(2)移動(dòng)點(diǎn),當(dāng)時(shí)求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a≠0,在同一直角坐標(biāo)系中,函數(shù)y=ax與y=ax2的圖象有可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E為AD中點(diǎn),CE延長(zhǎng)線交BA延長(zhǎng)線于點(diǎn)F.
(1)求證:CD=AF;
(2)若BC=2CD,求證:∠F=∠BCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長(zhǎng)為16,AE=4,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形和分別是邊長(zhǎng)為和的正方形.
(1)用含和的代數(shù)式表示圖中三角形的面積.
(2)用用和的代數(shù)式表示圖中陰影部分的面積.
(3)小軍計(jì)算出當(dāng),時(shí)的陰影部分面積,與小明計(jì)算的當(dāng),時(shí)的陰影部分面積相等,為什么呢?請(qǐng)說明理由,并求出此時(shí)的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ABCD中,P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、C不重合),連接BP,將BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BQ;連接PQ,PQ與BC交于點(diǎn)E,QP延長(zhǎng)線與AD(或AD延長(zhǎng)線)交于點(diǎn)F,連接CQ.求證:
(1)CQ=AP;
(2)△APB∽△CEP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是線段AB的中點(diǎn),C是EB上一點(diǎn),AC=12,
(1)若EC:CB=1:4,求AB的長(zhǎng);
(2)若F為CB的中點(diǎn),求EF長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com