【題目】如圖,在Rt△ABC中,∠B=90°,分別以A、C為圓心,大于AC長為半徑畫弧,兩弧相交于點MN,作直線MN,與AC交于點D,與BC交于點E,連接AE.

1∠ADE= °;

2AE CE(填“><、=”

3)當AB=3AC=5時,△ABE的周長是 .

【答案】190;(2=;(37.

【解析】

試題(1)由作圖可知MN是線段AC的垂直平分線,因此,∠ADE=90°.

2)因為線段垂直平分線上的點線段兩端距離相等,所以AE=CE.

3Rt△ABC中,∠B=90°,AB=3、AC=5根據(jù)勾股定理得BC=4.

∴△ABE的周長="AB+BE+AE=" AB+BE+CE=AB+AC=3+4=7.

試題解析:(190.

2=;

37.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象交于A(1,-k+4),B(k-4,-1)兩點.

(1)試確定這兩個函數(shù)的表達式;

(2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形中,為邊的中點,與對角線交于點,過于點

,求的長;

求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形中,,點上,,過點,交,點從點出發(fā)以個單位的速度沿著線段向終點運動,同時點從點出發(fā)也以個單位的速度沿著線段向終點運動,設運動時間為

填空:當時,________

平分時,直線將菱形的周長分成兩部分,求這兩部分的比;

為圓心,長為半徑的是否能與直線相切?如果能,求此時的值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的頂點的兩條直線分三角形邊上的中線所成的比,則這兩條直線分邊所成的比為(

A. 4:5:3 B. 3:4:2 C. 2:3:1 D. 1:1:1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點C、D,與邊BC相交于點F,OA與CD相交于點E,連接FE并延長交AC邊于點G.

(1)求證:DF∥AO;

(2)若AC=6,AB=10,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知BD、CE分別是△ABCAC邊、AB邊上的高,MBC邊的中點,分別連結MD、ME、DE。

(1)當∠BAC<90°時,垂足D、E分別落在邊AC、AB上,如圖1,求證:DM=EM;

(2)若∠BAC=120°,試判斷△DEM的形狀,并說明理由;

(3)當∠BAC= 時,△DEM是等腰直角三角形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.

如圖,垂直于地面放置的正方形框架,邊長,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子,的長度和為.那么燈泡離地面的高度為________.

不改變圖中燈泡的高度,將兩個邊長為的正方形框架按圖擺放,請計算此時橫向影子,的長度和為多少?

個邊長為的正方形按圖擺放,測得橫向影子的長度和為,求燈泡離地面的距離.(寫出解題過程,結果用含,的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,直角的頂點上,、分別交于點、繞點任意旋轉.當時,的值為________;當時,________.(用含的式子表示)

查看答案和解析>>

同步練習冊答案