若y+2與x-3成正比例,且x=0時,y=1,則當(dāng)x=1時,y=

[  ]

A.1
B.0
C.-1
D.2
答案:B
解析:

因為,

所以 y+2=k(x-3)

當(dāng)x=0時 y=1

則 1+2=k(0-3)

k=-1

所以函數(shù)是y=-x+1

當(dāng)x=1時 y=-1+1=0

選B.

說明:注意整體觀念的運用.這里把y+2和x-3看成一個整體.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一次函數(shù)y=(2m-1)x+m-2若這個函數(shù)的圖象與y軸負(fù)半軸相交,且不經(jīng)過第二象限,且m為正整數(shù).
(1)求這個函數(shù)的解析式.
(2)求直線y=-x和(1)中函數(shù)的圖象與x軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線C1:y=a(x-1)2+4與直線C2:y=x+b相交于點A(3,精英家教網(wǎng)0)和點B.
(1)求a、b的值;
(2)若P(t,y1),Q(2,y2)是拋物線C1上的兩點,且y1<y2,求實數(shù)t的取值范圍;
(3)如圖2,質(zhì)地均勻的正四面體骰子的各個面上依次標(biāo)有數(shù)字-1、1、3、4.隨機拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點的縱坐標(biāo).則點P(m,n) 落在圖1中拋物線C1與直線C2圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的頂點B、C在x軸上,A、D在拋物線y=ax2+bx上,且y=ax2+bx的最大值是2,y=ax2+bx與x軸的正半軸的交點E的坐標(biāo)是(2,0).
(1)求a,b的值;
(2)若矩形的頂點均為動點,且矩形在拋物線與x軸圍成的封閉區(qū)域內(nèi),試探索:是否存在周長為3的矩形?若存在,求出此時B點的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°,圖形②與圖形①恰好拼成一個菱形(如圖2).記AB的長度為a,BM的程度為b.
(1)圖形①中∠B=
72
72
度,圖形②∠E中=
36
36
度;
(2)愛動腦筋的小聰同學(xué),將圖形①命名為“風(fēng)箏一號”,圖形②命名為“飛鏢一號”,他用這兩種紙片各若干張,設(shè)計了以下拼圖游戲,請你和他一起玩吧:

①若僅用“風(fēng)箏一號”拼成一個邊長為b的正十邊形(正十邊形是指所有的邊相等,所有的角也相等的十邊形),需要這種紙片
5
5
張;
②若同時使用若干張“風(fēng)箏一號”和“飛鏢一號”拼成了一個“大風(fēng)箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ,請你在圖3中畫出拼接餡餅保留作圖痕跡.
(本題中均為無重疊、無縫隙拼接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)要用兩種不同的正多邊形地磚鋪地板,若已選用正三角形,則還可以選用正
邊形與它搭配鋪成無空隙且不重疊的地面(只需要寫出一種即可)

查看答案和解析>>

同步練習(xí)冊答案