【題目】為了迎接2022年北京冬奧會,萍鄉(xiāng)外國語學校組織了一次大型長跑比賽。甲,乙兩人在比賽時,路程(米)與時間(分鐘)的關系如圖所示,極據圖像解答下列問題:
(1)這次長跑比賽的全程是___米;先到達終點的人比另一個人領先____分鐘:
(2)乙是學校田徑隊運動員,十分注意比賽技巧,比賽過程分起跑、途中跑沖刺跑三階段,經歷了兩次加速過程.問第分鐘時乙還落后甲多少米?
(3)假設乙在第一次加速后,始終保持這個速度繼續(xù)前進。那么甲,乙兩人誰先到達終點?請說明理由.
(4)事實上乙追上甲的時間是多少分鐘?
【答案】(1),;(2)乙落后甲;(3)同時到達終點;(4)在第分鐘時乙追上甲.
【解析】
(1)根據圖像即可求解;
(2)由圖可知第四分鐘時,乙走了1300米,只要求出甲的路程即可,根據甲到達終點時的數(shù)據可求出甲的速度,即可求出第四分鐘的路程;
(3)由題意可求出2到4分鐘時,乙走了(1300-600)米,因此可求出此時的速度,又可得剩下的路程為(2000-1300)米,故剩下的時間即可求出,然后求出甲剩下的時間進行比較,即可求解;
(4)甲追上乙時路程相同,沖刺時乙的路程為(2000-1300)米,時間為(5.4-4)分鐘,那么可求出乙沖刺的速度,然后根據(2)求出的乙落后的距離,再求出追及的時間再加上前面的時間即可求出乙在第幾分鐘追上.
(1)這次長跑比賽的全程是2000米;先到達終點的人比另一個人領先6-5.4=0.6分鐘:
(2)甲速度為=,第四分鐘時甲行駛了米,
∴乙落后甲-1300=米.
(3)途中乙的速度為(1300-600)÷(4-2)=米/分鐘
剩下的路程還需時間(2000-1300)÷350=2分鐘
所以乙在第一次加速后,始終保持這個速度繼續(xù)前進甲,乙兩人同時到達終點;
(4)沖刺時乙速度為(2000-1300)÷(5.4-4)=米/分鐘
由(2)可知沖刺前還落后甲米.
則追上甲還需÷(500-)=0.2分鐘
4+0.2=4.2
故在第分鐘時乙追上甲.
科目:初中數(shù)學 來源: 題型:
【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:
次數(shù) | 購買數(shù)量(件 | 購買總費用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根據以上信息解答下列問題:
(1)求A,B兩種商品的單價;
(2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點(可以與O、B重合),點F為射線DC上一點,若∠ABC=60,∠AEF=120,AB=5,則EF的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線CB∥OA,∠C=∠A=112°,E,F在CB上,且滿足∠FOB=∠AOB,DE平分∠COF.
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某批發(fā)市場經銷龜苓膏粉,其中品牌的批發(fā)價是每包20元,品牌的批發(fā)價是每包25元,小明計劃購買這兩種品牌的龜苓膏粉共1000包,解答下列問題:
(1)若購買這些龜苓膏粉共花費22000元,求兩種品牌的龜苓膏粉各購買了多少包?
(2)若憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費用為500元,
若購買會員卡并用此卡購買這些龜苓膏粉共花費元,設品牌購買了包,請求出與之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1,l2是緊靠某湖泊的兩條相互垂直的公路,曲線段CD是該湖泊環(huán)湖觀光大道的一部分.現(xiàn)準備修建一條直線型公路AB,用以連接兩條公路和環(huán)湖觀光大道,且直線AB與曲線段CD有且僅有一個公共點P.已知點C到l1,l2的距離分別為8km和1km,點P到l1的距離為4km,點D到l1的距離為0.8km.若分別以l1,l2為x軸、y軸建立平面直角坐標系xOy,則曲線段CD對應的函數(shù)解析式為y=.
(1)求k的值,并指出函數(shù)y=的自變量的取值范圍;
(2)求直線AB的解析式,并求出公路AB長度(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=2x-2的圖像與反比例函數(shù)y= 的圖像交于點M(2,a)與N(b,-4)兩點。
(1)求反比例函數(shù)的解析式.
(2)畫出草圖,根據圖像寫出反比例函數(shù)的值大于一次函數(shù)的值時的x的取值范圍.
(3)求△MON的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的正方形網格中,每個小正方形的邊長均為1個單位, 的三個頂點都在格點上.
(1)在網格中畫出向下平移3個單位得到的;
(2)在網格中畫出關于直線對稱的;
(3)在直線上畫一點,使得的值最大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了抓住梵凈山文化藝術節(jié)的商機,某商店決定購進A、B兩種藝術節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com