如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3.
(1)該三角形的外接圓的半徑長等于????? ;
(2)用直尺和圓規(guī)作出該三角形的內(nèi)切圓(不寫作法,保留作圖痕跡),并求出該三角形內(nèi)切圓的半徑長.
(1)2.5;(2)作圖見解析,該三角形內(nèi)切圓的半徑長為1.
【解析】
試題分析:(1)根據(jù)勾股定理求出AB,即可求出答案;
(2)作兩角的平分線,交點為圓心,以交點到邊的距離為半徑作出圓即可.根據(jù)三角形面積公式求出內(nèi)切圓半徑即可.
試題解析:(1)在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:
∴三角形的外接圓的半徑長是×5=2.5.
(2)作圖如下:
連接OA、OB、OC、OD、OE、OF,
設(shè)內(nèi)切圓的半徑長為r,則OD=OE=OF=r,
由S△OBC+S△OAC+S△OAB=S△ABC得:(3r+4r+5r)=×3×4,解得:r=1.
∴該三角形內(nèi)切圓的半徑長是1.
考點:1.三角形的內(nèi)切圓與內(nèi)心;2.三角形的外接圓與外心;3.作圖—復雜作圖.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com