【題目】在矩形ABCD中,將點(diǎn)A翻折到對角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長.
【答案】(1)證△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根據(jù)平行四邊形判定推出即可.
(2)
【解析】
(1)證△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根據(jù)平行四邊形判定推出即可.
(2)求出∠ABE=30°,根據(jù)直角三角形性質(zhì)求出AE、BE,即可求出答案.
解:(1)證明:∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD.∴∠ABD=∠CDB.
∵在矩形ABCD中,將點(diǎn)A翻折到對角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對角線BD上的點(diǎn)N處,
∴∠ABE=∠EBD=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.
在△ABE和△CDF中,∵,
∴△ABE≌△CDF(ASA).∴AE=CF.
∵四邊形ABCD是矩形,∴AD=BC,AD∥BC.
∴DE=BF,DE∥BF.∴四邊形BFDE為平行四邊形.
(2)∵四邊形BFDE為為菱形,∴BE=ED,∠EBD=∠FBD=∠ABE.
∵四邊形ABCD是矩形,∴AD=BC,∠ABC=90°.∴∠ABE=30°.
∵∠A=90°,AB=2,∴,.
∴BC=AD=AE+ED=AE+BE=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點(diǎn)A,分別過正方形的頂點(diǎn)B、D作BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,若DE=8,BF=5,則EF的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.在△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn),如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,同時點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動.
(1)若點(diǎn)Q與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由.
(2)若點(diǎn)Q與點(diǎn)P的運(yùn)動速度不同,當(dāng)點(diǎn)Q的運(yùn)動速度是多少時能使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy(如圖)中,已知拋物線y=+bx+c點(diǎn)經(jīng)過A(1,0)、B(0,2).
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線的對稱軸與x軸的交點(diǎn)為C,第四象限內(nèi)的點(diǎn)D在該拋物線的對稱軸上,如果以點(diǎn)A、C、D所組成的三角形與△AOB相似,求點(diǎn)D的坐標(biāo);
(3)設(shè)點(diǎn)E在該拋物線的對稱軸上,它的縱坐標(biāo)是1,聯(lián)結(jié)AE、BE,求sin∠ABE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C三點(diǎn)在⊙O上,直徑BD平分∠ABC,過點(diǎn)D作DE∥AB交弦BC于點(diǎn)E,在BC的延長線上取一點(diǎn)F,使得EFDE.
(1)求證:DF是⊙O的切線;
(2)連接AF交DE于點(diǎn)M,若 AD4,DE5,求DM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)E,射線EG在∠AEC內(nèi)(如圖1).
(1)若∠BEC的補(bǔ)角是它的余角的3倍,則∠BEC= °;
(2)在(1)的條件下,若∠CEG比∠AEG小25度,求∠AEG的大。
(3)若射線EF平分∠AED,∠FEG=m°(m>90°)(如圖2),則∠AEG﹣∠CEG= °(用m的代表式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B90°,AB4,BC2,以AC為邊作△ACE,∠ACE90°,AC=CE,延長BC至點(diǎn)D,使CD5,連接DE.求證:△ABC∽△CED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義運(yùn)算:ab=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的兩根,則bb﹣aa的值為( )
A. 0 B. 1 C. 2 D. 與m有關(guān)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,M、N分別在AD、BC上,且AM=CN,連接MN與AC交于點(diǎn)O,連接BO,若∠DAC=28°,則∠OBC的度數(shù)為( )
A.28°B.56°C.62°D.72°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com