【題目】如圖,直線ABCD相交于點(diǎn)E,射線EG在∠AEC內(nèi)(如圖1).

1)若∠BEC的補(bǔ)角是它的余角的3倍,則∠BEC   °

2)在(1)的條件下,若∠CEG比∠AEG25度,求∠AEG的大。

3)若射線EF平分∠AED,∠FEGm°m90°)(如圖2),則∠AEG﹣∠CEG   °(用m的代表式表示).

【答案】145°;(2)∠AEG80°;(32m180

【解析】

1設(shè)∠BECx°,根據(jù)題意,可列方程:180x390x),解出BEC;

2)由CEGAEG25°,得AEG180°BECCEG180°45°﹣(AEG25°),解出AEG;

3)計(jì)算出AEGCEG,然后相減,即可得到結(jié)果.

解:(1)設(shè)BECx°,

根據(jù)題意,可列方程:180x390x),

解得x45°,

BEC45°

故答案為:45°;

2∵∠CEGAEG25°,

∴∠AEG180°BECCEG

180°45°﹣(AEG25°)=160°AEG,

∴∠AEG80°;

3EF平分AED

∴∠AEFDEF,

設(shè)AEFDEFα,AEGFEGAEFmα,

CEG180°GEFDEF180mα

∴∠AEGCEGmα﹣(180mα)=2m180.

故答案為:2m180.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列各題(每題5分,共30分)

(1) (2)

(3) (4) 解不等式2(x+2)-6≤-5(x-4)

(5) (6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,同時(shí)將點(diǎn)A(﹣1,0)、B3,0)向上平移2個(gè)單位長(zhǎng)度再向右平移1個(gè)單位長(zhǎng)度,分別得到A、B的對(duì)應(yīng)點(diǎn)CD.連接ACBD

1)求點(diǎn)C、D的坐標(biāo),并描出AB、C、D點(diǎn),求四邊形ABDC面積;

2)在坐標(biāo)軸上是否存在點(diǎn)P,連接PAPC使SPACS四邊形ABCD?若存在,求點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古代阿拉伯?dāng)?shù)學(xué)家泰比特·伊本·奎拉對(duì)勾股定理進(jìn)行了推廣研究如圖(圖1為銳角,2為直角3為鈍角)

ABC的邊BC上取, 兩點(diǎn),使, , ,進(jìn)而可得 ;(用表示

AB=4AC=3,BC=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BEAD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DFBC于點(diǎn)F

1)求證:四邊形BFDE為平行四邊形;

2)若四邊形BFDE為菱形,且AB2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是“作一個(gè)30°角”的尺規(guī)作圖過程

請(qǐng)回答該尺規(guī)作圖的依據(jù)是______________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,現(xiàn)有一個(gè)均勻的轉(zhuǎn)盤被平均分成6等份,分別標(biāo)有數(shù)字23、45、67這六個(gè)數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時(shí),指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.

求:(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于3的概率是多少?

2)現(xiàn)有兩張分別寫有34的卡片,隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長(zhǎng)度.

①這三條線段能構(gòu)成三角形的概率是 .

②這三條線段能構(gòu)成等腰三角形的概率是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,則小巷的寬度為( )

A.2.2B.2.3C.2.4D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:A,B兩城相距300千米;乙車比甲車晚出發(fā)1小時(shí),卻早到1小時(shí);乙車出發(fā)后2小時(shí)追上甲車;當(dāng)甲、乙兩車相距50千米時(shí),t.其中正確的結(jié)論有_____

查看答案和解析>>

同步練習(xí)冊(cè)答案