【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使BOC=120°,將一個(gè)含30°的直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.(圖中OMN=30°,∠NOM=90°)

(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使OMBOC的內(nèi)部,且恰好平分BOC,問直線ON是否平分AOC?請(qǐng)說明理由;

(2)將圖1中的三角板繞點(diǎn)O按每秒的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時(shí),直線ON恰好平分銳角AOC,求t

(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ONAOC的內(nèi)部,請(qǐng)?zhí)骄浚?/span>AOMNOC之間的數(shù)量關(guān)系,并說明理由.

【答案】(1)直線ON平分AOC理由詳見解析;(2)t=10t=40;(3)AOMNOC=30°.

【解析】

(1)由角的平分線的定義和等角的余角相等求解;

(2)由∠BOC=120°可得∠AOC=60°,則∠AON=30°或∠NOR=30°,即順時(shí)針旋轉(zhuǎn)300°或120°時(shí)ON平分∠AOC,據(jù)此求解;

(3)因?yàn)椤?/span>MON=90°,∠AOC=60°,所以∠AOM=90°-∠AON、∠NOC=60°-∠AON,然后作差即可.

解:(1)直線ON平分∠AOC;

理由:

設(shè)ON的反向延長(zhǎng)線為OD,

∵OM平分∠BOC,

∴∠MOC=∠MOB=60°,

又∵OM⊥ON,

∴∠MON=90°,

∴∠BON=30°,

∴∠CON=120°+30°=150°,

∴∠COD=30°,

∴OD平分∠AOC,

即直線ON平分∠AOC;

(2)由(1)可知∠BON=30°,∠DON=180°,

因此ON旋轉(zhuǎn)60°或240°時(shí)直線ON平分∠AOC,

由題意得,6t=60°或240°,

∴t=1040;

(3)∵∠MON=90°,∠AOC=60°,

∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,

∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2018的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開后折痕DE分別交AB、AC于點(diǎn)E、G,連結(jié)GF,給出下列結(jié)論:①∠ADG=22.5°;②tan∠AED=2;③SAGD=SOGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若SOGF=1,則正方形ABCD的面積是6+4 ,其中正確的結(jié)論個(gè)數(shù)為(  )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB延長(zhǎng)線上一點(diǎn),D為線段BC上一點(diǎn),CD2BDE為線段AC上一點(diǎn),CE2AE

(1)AB18,BC21,求DE的長(zhǎng);

(2)ABa,求DE的長(zhǎng);(用含a的代數(shù)式表示)

(3)若圖中所有線段的長(zhǎng)度之和是線段AD長(zhǎng)度的7倍,則的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若四條直線x=1,y=﹣1,y=3,y=kx﹣3所圍成的凸四邊形的面積等于12,則k的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊(duì)在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)A駛向終點(diǎn)B,在整個(gè)行程中,龍舟離開起點(diǎn)的距離y(米)與時(shí)間x(分鐘)的對(duì)應(yīng)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問題:

1)起點(diǎn)A與終點(diǎn)B之間相距多遠(yuǎn)?

2)哪支龍舟隊(duì)先出發(fā)?哪支龍舟隊(duì)先到達(dá)終點(diǎn)?

3)分別求甲、乙兩支龍舟隊(duì)的yx函數(shù)關(guān)系式;

4)甲龍舟隊(duì)出發(fā)多長(zhǎng)時(shí)間時(shí)兩支龍舟隊(duì)相距200米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表為某個(gè)雨季水庫管理員記錄的水庫一周內(nèi)的水位變化情況,警戒水位為150m(上周末的水位剛好達(dá)到警戒水位).

星期

增減/m

+1.2

+0.4

+0.8

﹣0.1

+0.7

﹣0.7

﹣1.1

注:正數(shù)表示比前一天水位上升,負(fù)數(shù)表示比前一天水位下降.

(1)本周哪一天水位最高?有多少米?

(2)本周哪一天水位最低?有多少米?

(3)根據(jù)給出的數(shù)據(jù),以警戒水位為0點(diǎn),用折線統(tǒng)計(jì)圖表示本周內(nèi)該水庫的水位情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1)3x-2=1-2(x+1)

(2)

(3)2x+3(2x﹣1)=16-(x+1)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過點(diǎn)( ,﹣ ),點(diǎn)P(t,0)是x軸上的動(dòng)點(diǎn),拋物線與y軸交點(diǎn)為C,頂點(diǎn)為D.
(1)求該二次函數(shù)的解析式,及頂點(diǎn)D的坐標(biāo);
(2)求|PC﹣PD|的最大值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo);
(3)設(shè)Q(0,2t)是y軸上的動(dòng)點(diǎn),若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個(gè)公共點(diǎn),求t的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案