【題目】如圖,小明在水平面E處,測得某建筑物AB的頂端A的仰角為42°,向正前方向走37米到達(dá)點D處,再往斜坡CD上走30米到達(dá)點C處,測得建筑物AB的頂端A的仰角為63.5°,已知斜坡CD的坡度為i=1:0.75,建筑物AB垂直于平臺BC,平臺BC與水平面DE平行,點A、B、C、D、E均在同一平面內(nèi),則建筑物AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.0)
A.42.4米B.46.4米C.48.5米D.50.8米
【答案】B
【解析】
作CG⊥DE交ED的延長線于G,延長AB交ED的延長線于H,根據(jù)坡度的概念分別求出CG、DG,根據(jù)正切的定義用AB表示出BC,根據(jù)正切的定義列式計算,得到答案.
解:作CG⊥DE交ED的延長線于G,延長AB交ED的延長線于H,
則四邊形BHGC為矩形,
∴BH=CG,BC=HG,
設(shè)CG=x米,
∵斜坡CD的坡度為i=1:0.75,
∴DG=3x,
由勾股定理得,CD2=CG2+DG2,即302=(4x)2+(3x)2,
解得,x=6,
∴CG=24,DG=18,
在Rt△ABC中,tan∠ACB=,
∴BC=,
在Rt△AHE中,tan∠AEH=
∴≈0.9,
解得,AB≈46.4,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點A(3,0)、
B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設(shè)點P的橫
坐標(biāo)為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點P在第四象限,連接AM、BM,當(dāng)線段PM最長時,求△ABM的面積.
(3)是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,y是關(guān)于的二次函數(shù),拋物線經(jīng)過點.拋物線經(jīng)過點拋物線經(jīng)過點拋物線經(jīng)過點則下列判斷:
①四條拋物線的開口方向均向下;
②當(dāng)時,四條拋物線表達(dá)式中的均隨的增大而增大;
③拋物線的頂點在拋物線頂點的上方;
④拋物線與軸交點在點的上方.
其中正確的是
A.①②④B.①③④
C.①②③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,拋物線與軸交于點A、B(點A在點B的左側(cè)),且AB=6.
(1)求這條拋物線的對稱軸及表達(dá)式;
(2)在y軸上取點E(0,2),點F為第一象限內(nèi)拋物線上一點,聯(lián)結(jié)BF、EF,如果,求點F的坐標(biāo);
(3)在第(2)小題的條件下,點F在拋物線對稱軸右側(cè),點P在軸上且在點B左側(cè),如果直線PF與y軸的夾角等于∠EBF,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點,交軸于點.
(1)求拋物線的解析式.
(2)點是線段上一動點,過點作垂直于軸于點,交拋物線于點,求線段的長度最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)函數(shù)的過程中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式﹣﹣利用函數(shù)圖象研究其性質(zhì)﹣﹣運用函數(shù)解決問題”的學(xué)習(xí)過程,根據(jù)你所經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)y=ax3﹣bx+2中,當(dāng)x=﹣1時,y=4;當(dāng)x=﹣2時 y=0.
(1)根據(jù)已知條件可知這個函數(shù)的表達(dá)式 .
(2)根據(jù)已描出的部分點,畫出該函數(shù)圖象.
(3)觀察所畫圖象,回答下列問題:
①該圖象關(guān)于點 成中心對稱;
②當(dāng)x取何值時,y隨著x的增大而減。
③若直線y=c與該圖象有3個交點,直接寫出c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,點位于第一象限,點為坐標(biāo)原點,點在軸正半軸上,若雙曲線與的邊、分別交于點、,點為的中點,連接、.若,則為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校旗桿的下方有一塊圓形草坪,草坪的外面圍著“圓環(huán)”水池,草坪和水池的外邊緣是兩個同心圓,旗桿在圓心O的位置且與地面垂直.
(1)若草坪的面積與圓環(huán)水池的面積之比為1∶4,求兩個同心圓的半徑之比.
(2)如圖,若水池外面通往草坪有一座10米長的小橋BC,小橋所在的直線經(jīng)過圓心O,上午8:00時太陽光線與地面成30°角,旗桿頂端的影子恰好落在水池的外緣;上午9:00時太陽光線與地面成45°角,旗桿頂端的影子恰好落在草坪的外緣,求旗桿的高OA長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC,
(1)求證:AC是⊙O的切線;
(2)若BF=8,DF=,求⊙O的半徑.
(3)過點B作⊙O的切線交CA的延長線于G,如果連接AE,將線段AC以直線AE為對稱軸作對稱線段AH,點H正好落在⊙O上,連接BH,求證:四邊形AHBG為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com