如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),二次函數(shù)y=x2的圖象記為拋物線l1

(1)平移拋物線l1,使平移后的拋物線經(jīng)過A、B兩點(diǎn),記為拋物線l2,求拋物線l2的函數(shù)表達(dá)式;
(2)設(shè)拋物線l2的頂點(diǎn)為C,請(qǐng)你判斷y軸上是否存在點(diǎn)K,使得∠BKC=90°,若存在,求出K點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由;
(3)拋物線l2與y軸交于點(diǎn)D,點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P,作y軸的平行線,交拋物線l2于點(diǎn)E,求線段PE長度的最大值.
(1)∵拋物線l2經(jīng)過A(-1,0),B(3,0)
∴設(shè)拋物線l2的解析式為:y=a(x+1)(x-3)…(1分)
∵拋物線l2是由y=x2平移得到,
∴a=1
∴拋物線l2的函數(shù)表達(dá)式:y=x2-2x-3…(2分)

(2)存在點(diǎn)K…(3分)
∵拋物線l2的函數(shù)表達(dá)式:y=x2-2x-3,
∴y=(x-1)2-4,
∴拋物線l2的頂點(diǎn)坐標(biāo)為(1,-4)
過點(diǎn)C作CG垂直于y軸,垂足為G

若∠OKB+∠GKC=90°
則∠BKC=90°,∠OBK=∠GKC
∴△OKB△GCK,
OB
OK
=
GK
GC
,
3
OK
=
4-OK
1

解之得:OK=1,或OK=3
∴點(diǎn)K坐標(biāo)為(0,-1)或(0,-3)…(4分)

(3)拋物線l2與y軸交于點(diǎn)D,拋物線l2的函數(shù)表達(dá)式:y=x2-2x-3
∴點(diǎn)D坐標(biāo)為(0,-3),
∴設(shè)直線BD的解析式為:y=kx+b
將B(3,0),D(0,-3)代入y=kx+b
得:
3k+b=0
b=-3

∴解之得:
k=1
b=-3
;
∴解析式為:y=x-3…(5分)
∵點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),
∴點(diǎn)P坐標(biāo)為(x,x-3)
∵PE平行于y軸,且點(diǎn)E在拋物線l2上,
∴點(diǎn)E坐標(biāo)為(x,x2-2x-3)
線段PE的長度為|x2-2x-3|-|x-3|
則PE=-x2+3x=-(x-
3
2
)2+
9
4

∴線段PE長度的最大值
9
4
…(6分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-bx-c的圖象與x軸交于A、B兩點(diǎn),當(dāng)時(shí)x=1,二次函數(shù)取得最大值4,且|OA|=-
1
n
+2,
(1)求二次函數(shù)的解析式.
(2)已知點(diǎn)P在二次函數(shù)的圖象上,且有S△PAB=8,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx經(jīng)過圓點(diǎn)O和x軸上的另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1與拋物線y=a2+bx交于點(diǎn)B(-2,m),且y軸、直線x=2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)解析式;
(2)試判斷△ECB的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c與x軸相交于兩點(diǎn)A(1,0),B(3,0)與y軸相交于點(diǎn)C(0,3),
(l)求拋物線的函數(shù)關(guān)系式;
(2)若點(diǎn)D(4,m)是拋物線y=ax2+bx+c上一點(diǎn),請(qǐng)求出m的值,并求出此時(shí)△ABD的面積;
(3)若點(diǎn)A(x1,y1)、B(x2,y2)是該二次函數(shù)圖象上的兩點(diǎn),且-1<x1<0,1<x2<2,試比較兩函數(shù)值的大。簓1______y2
(4)若自變量x的取值范圍是0≤x≤5,則函數(shù)值y的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

音樂噴泉的某一個(gè)噴水口,噴出的一束水流形狀是拋物線,在這束水流所在平面建立平面直角坐標(biāo)系,以水面與此面的相交線為x軸,以噴水管所在的鉛垂線為y軸,噴出的水流拋物線的解析式為:y=-x2+bx+2.但控制進(jìn)水速度,可改變噴出的水流達(dá)到的最大高度,及落在水面的落點(diǎn)距噴水管的水平距離.
(1)噴出的水流拋物線與拋物線y=ax2的形狀相同,則a=______;
(2)落在水面的落點(diǎn)距噴水管的水平距離為2個(gè)單位長時(shí),求水流拋物線的解析式;
(3)求出(2)中的拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(4)對(duì)于水流拋物線y=-x2+bx+2.當(dāng)b=b1時(shí),落在水面的落點(diǎn)坐標(biāo)為M(m,0),當(dāng)b=b2時(shí),落在水面的落點(diǎn)坐標(biāo)為N(n,0),點(diǎn)M與點(diǎn)N都在x軸的正半軸,且點(diǎn)M在點(diǎn)N的右邊,試比較b1與b2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0)兩點(diǎn),且過點(diǎn)(-1,16),拋物線的頂點(diǎn)是點(diǎn)C,對(duì)稱軸與x軸的交點(diǎn)為點(diǎn)D,原點(diǎn)為點(diǎn)O.在y軸的正半軸上有一動(dòng)點(diǎn)N,使以A、O、N這三點(diǎn)為頂點(diǎn)的三角形與以C、A、D這三點(diǎn)為頂點(diǎn)的三角形相似.求:
(1)這條拋物線的解析式;
(2)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某市舉行釣魚比賽,如圖,選手甲釣到了一條大魚,魚竿被拉彎近似可看作以A為最高點(diǎn)的一條拋物線,魚線AB長6m,魚隱約在水面了,估計(jì)魚離魚竿支點(diǎn)有8m,此時(shí)魚竿魚線呈一個(gè)平面,且與水平面夾腳α恰好為60°,以魚竿支點(diǎn)為原點(diǎn),則魚竿所在拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)h=3.5t-4.9t2(t的單位:s,h的單位:m)可以描述小敏跳遠(yuǎn)時(shí)重心高度的變化,則他起跳后到重心最高時(shí)所用的時(shí)間約是( 。
A.0.36sB.0.63sC.0.70sD.0.71s

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,拋物線t=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A,M為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),直線MB交拋物線于N,交⊙P于D.
(1)填空:A點(diǎn)坐標(biāo)是______,⊙P半徑的長是______,a=______,b=______,c=______;
(2)若S△BNC:S△AOB=15:2,求N點(diǎn)的坐標(biāo);
(3)若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案