精英家教網 > 初中數學 > 題目詳情
如圖,已知二次函數y=ax2-bx-c的圖象與x軸交于A、B兩點,當時x=1,二次函數取得最大值4,且|OA|=-
1
n
+2,
(1)求二次函數的解析式.
(2)已知點P在二次函數的圖象上,且有S△PAB=8,求點P的坐標.
(1)由題意,設二次函數為y=a(x-1)2+4,
令y=0,解得:x=1±
2
-a

故A的橫坐標為x=1+
2
-a
,即|OA|=-
1
a
+2=1+
2
-a
,
解得:a=-1,
則二次函數的解析式是
y=-(x-1)2+4,即y=-x2+2x+3;

(2)令y=0,得A、B坐標為(3,0),(-1,0),
則|AB|=4,
設點P的坐標為(x,y),
由題意S△PAB=8,得|y|=4,
則y=±4,即4=-x2+2x+3或-4=-x2+2x+3,
解得:x=1或x=1±2
2
,
故所求點P的坐標為(1,4),(1+2
2
,-4),(1-2
2
,-4).
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知,如圖,在平面直角坐標系中,以BC為直徑的⊙M交x軸正半軸于點A、B,交y軸正半軸于點E、F,過點C作CD垂直y軸,垂足為點D,連接AM并延長交⊙M于點P,連接PE.
(1)求證:∠FAO=∠EAM;
(2)若二次函數y=-x2+px+q的圖象經過點B、C、E,且以C為頂點,當點B的橫坐標等于2時,四邊形OECB的面積是
11
4
,求這個二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,已知:拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點,與y軸交于點C,經過B、C兩點的直線是y=
1
2
x-2
,連接AC.
(1)寫出B、C兩點坐標,并求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內部能否截出面積最大的矩形DEFG(頂點D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標;若不能,請說明理由.
{拋物線y=ax2+bx+c的頂點坐標是(-
b
2a
,
4ac-b2
4a
)
}.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,平面直角坐標系xOy中,拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點,點C是AB的中點,CD⊥AB且CD=AB.直線BE與y軸平行,點F是射線BE上的一個動點,連接AD、AF、DF.
(1)若點F的坐標為(
9
2
,1),AF=
17

①求此拋物線的解析式;
②點P是此拋物線上一個動點,點Q在此拋物線的對稱軸上,以點A、F、P、Q為頂點構成的四邊形是平行四邊形,請直接寫出點Q的坐標;
(2)若2b+c=-2,b=-2-t,且AB的長為kt,其中t>0.如圖2,當∠DAF=45°時,求k的值和∠DFA的正切值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(-1,0),點B的坐標為(3,0),二次函數y=x2的圖象記為拋物線l1

(1)平移拋物線l1,使平移后的拋物線經過A、B兩點,記為拋物線l2,求拋物線l2的函數表達式;
(2)設拋物線l2的頂點為C,請你判斷y軸上是否存在點K,使得∠BKC=90°,若存在,求出K點坐標,若不存在,請說明理由;
(3)拋物線l2與y軸交于點D,點P是線段BD上的一個動點,過點P,作y軸的平行線,交拋物線l2于點E,求線段PE長度的最大值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為1,當點E在邊BC上運動時(不與正方形的頂點重合),連接AE,過點E作EF⊥AE交CD于點F.設BE=x,CF=y,求下列問題:
(1)證明△ABE△ECF;
(2)求出y關于x的函數關系式;
(3)試求當x取何值時?y有最大或最小值,是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面之間坐標系,點B在第一象限內,將Rt△OAB沿OB折疊后,點A落在第一象限內的點C處.
(1)點C的坐標為______;
(2)若拋物線y=ax2+bx經過C,A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M,問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,求出此時點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知AB=2,C是AB上一點,四邊形ACDE和四邊形CBFG,都是正方形,設BC=x,
(1)AC=______;
(2)設正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數表達式為S=______.
(3)總面積S有最大值還是最小值?這個最大值或最小值是多少?
(4)總面積S取最大值或最小值時,點C在AB的什么位置?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+5x+m經過點A(1,0),與y軸交于點B,
(1)求m的值;
(2)若拋物線與x軸的另一交點為C,求△CAB的面積;
(3)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求點P的坐標.

查看答案和解析>>

同步練習冊答案