【題目】某電器商城銷售A、B兩種型號(hào)的電風(fēng)扇,進(jìn)價(jià)分別為160元、120元,下表是近兩周的銷售情況:
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若商城準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,商城要求至少購(gòu)買A型電風(fēng)扇35臺(tái),商場(chǎng)共有幾種進(jìn)貨方案?并給出利潤(rùn)最大的方案?
【答案】(1)A、B兩種型號(hào)電風(fēng)扇的銷售單價(jià)分別為200元、150元;(2)37臺(tái);(3)三種進(jìn)貨方案,利潤(rùn)最大的方案為采購(gòu)A種型號(hào)的電風(fēng)扇37臺(tái),B種型號(hào)的電風(fēng)扇13臺(tái).
【解析】
(1)設(shè)A、B兩種型號(hào)電風(fēng)扇的銷售單價(jià)分別為x元、y元,根據(jù)3臺(tái)A型號(hào)4臺(tái)B型號(hào)的電扇收入1200元,5臺(tái)A型號(hào)6臺(tái)B型號(hào)的電扇收入1900元,列方程組求解;
(2)設(shè)采購(gòu)A種型號(hào)電風(fēng)扇a臺(tái),則采購(gòu)B種型號(hào)電風(fēng)扇(50a)臺(tái),根據(jù)金額不多于7500元,列不等式求解;
(3)根據(jù)(2)中條件可得出有三種方案,根據(jù)A種型號(hào)電風(fēng)扇的進(jìn)價(jià)和售價(jià)、B種型號(hào)電風(fēng)扇的進(jìn)價(jià)和售價(jià)列出總利潤(rùn)函數(shù)關(guān)系式,再根據(jù)函數(shù)關(guān)系式性質(zhì),代入a的值,即可得出答案.
解:(1)設(shè)A、B兩種型號(hào)電風(fēng)扇的銷售單價(jià)分別為x元、y元,
依題意得:
,解得,
答:A、B兩種型號(hào)電風(fēng)扇的銷售單價(jià)分別為200元、150元.
(2)設(shè)采購(gòu)A種型號(hào)電風(fēng)扇a臺(tái),則采購(gòu)B種型號(hào)電風(fēng)扇(50a)臺(tái).
依題意得:160a+120(50a)≤7500,
解得:a≤.
答:超市最多采購(gòu)A種型號(hào)電風(fēng)扇37臺(tái)時(shí),采購(gòu)金額不多于7500元.
(3)在(2)的條件下,可行方案有三種:
當(dāng)a=35時(shí),采購(gòu)A種型號(hào)的電風(fēng)扇35臺(tái),B種型號(hào)的電風(fēng)扇15臺(tái);
當(dāng)a=36時(shí),采購(gòu)A種型號(hào)的電風(fēng)扇36臺(tái),B種型號(hào)的電風(fēng)扇14臺(tái);
當(dāng)a=37時(shí),采購(gòu)A種型號(hào)的電風(fēng)扇37臺(tái),B種型號(hào)的電風(fēng)扇13臺(tái).
根據(jù)題意得:利潤(rùn)的函數(shù)關(guān)系式為:
y=(200160)a+(150120)(50a)
即y=10a+1500,
當(dāng)a越大時(shí),y越大,
∴當(dāng)a=37時(shí),最大利潤(rùn)y=1870(元)
∴最大利潤(rùn)的方案為采購(gòu)A種型號(hào)的電風(fēng)扇37臺(tái),B種型號(hào)的電風(fēng)扇13臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一種某小區(qū)的兩幢10層住宅樓間的距離為AC=30m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長(zhǎng)EC=h,太陽(yáng)光線與水平線的夾角為α
(1)用含α的式子表示h(不必指出α的取值范圍);
(2)用含α的式子表示h(不必指出α的取值范圍);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BC,∠PAB的平分線與∠CBA的平分線相交于E,CE的連線交AP于D.
求證:AD+BC=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線 AB與 x 軸,y 軸分別交于點(diǎn) A和點(diǎn) B,點(diǎn) A的坐標(biāo)為(1,0),且 2OA=OB.
(1)求直線 AB 解析式;
(2)如圖,將△A O B 向右平移 3 個(gè)單位長(zhǎng)度,得到△A1O1B1,求線段 O B1的長(zhǎng);
(3)在(2)中△AOB 掃過(guò)的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,四邊形OABC為矩形,OA在x軸正半軸上,OC在y軸正半軸上,且A(10,0)、C(0,8)
(1)如圖1,在矩形OABC的邊AB上取一點(diǎn)E,連接OE,將△AOE沿OE折疊,使點(diǎn)A恰好落在BC邊上的F處,求AE的長(zhǎng);
(2)將矩形OABC的AB邊沿x軸負(fù)方向平移至MN(其它邊保持不變),M、N分別在邊OA、CB上且滿足CN=OM=OC=MN.如圖2,P、Q分別為OM、MN上一點(diǎn).若∠PCQ=45°,求證:PQ=OP+NQ;
(3)如圖3,S、G、R、H分別為OC、OM、MN、NC上一點(diǎn),SR、HG交于點(diǎn)D.若∠SDG=135°,HG=4,求RS的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過(guò)點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的中點(diǎn),連接AD,BE平分∠ABC交AC于點(diǎn)E,過(guò)E作EF∥BC交AB于點(diǎn)F.
(1)若∠C=36°,求∠BAD的度數(shù);
(2)求證:FB=FE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線的交點(diǎn))上.
(1)畫出△ABC先向右平移5個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度所得的△A1B1C1;
(2)畫出△ABC的中線AD;
(3)畫出△ABC的高CE所在直線,標(biāo)出垂足E:
(4)在(1)的條件下,線段AA1和CC1的關(guān)系是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=9,把矩形ABCD沿對(duì)角線BD折疊,使點(diǎn)C與點(diǎn)F重合,BF交AD于點(diǎn)M,過(guò)點(diǎn)C作CE⊥BF于點(diǎn)E,交AD于點(diǎn)G,則MG的長(zhǎng)= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com