已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為               
(2,4)或(3,4)或(8,4).

試題分析:分PD=OD(P在右邊),PD=OD(P在左邊),OP=OD三種情況,根據(jù)題意畫出圖形,作PQ垂直于x軸,找出直角三角形,根據(jù)勾股定理求出OQ,然后根據(jù)圖形寫出P的坐標即可.
當OD=PD(P在右邊)時,根據(jù)題意畫出圖形,如圖所示:

過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD=OA=5,根據(jù)勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,則P1(8,4);
當PD=OD(P在左邊)時,根據(jù)題意畫出圖形,如圖所示:

過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,根據(jù)勾股定理得:QD=3,故OQ=OD-QD=5-3=2,則P2(2,4);
當PO=OD時,根據(jù)題意畫出圖形,如圖所示:

過P作PQ⊥x軸交x軸于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,根據(jù)勾股定理得:OQ=3,則P3(3,4),
綜上,滿足題意的P坐標為(2,4)或(3,4)或(8,4).
故答案為:(2,4)或(3,4)或(8,4)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

用一張長12cm寬5cm的矩形紙片折出一個菱形.小穎同學按照取兩組對邊中點的方法折出菱形EFGH(方案一),小豐同學沿矩形的對角線AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(方案二).誰折出的菱形面積更大?請你通過計算說明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若動點P從A點出發(fā),以每秒4cm的速度沿線段AD、DC向C點運動;動點Q從C點出發(fā)以每秒5cm的速度沿CB向B點運動.當Q點到達B點時,動點P、Q同時停止運動.設點P、Q同時出發(fā),并運動了t秒,

(1)直角梯形ABCD的面積為             cm2.
(2)當t=     秒時,四邊形PQCD成為平行四邊形?
(3)當t=     秒時,AQ=DC;
(4)是否存在t,使得P點在線段DC上且PQ⊥DC?若存在,求出此時t的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

A,B,C三個村莊在一條東西走向的公路沿線,如圖所示,AB=2km,BC=3km,在B村的正北方向有一個D村,測得∠ADC=450今將△ACD區(qū)域規(guī)劃為開發(fā)區(qū),除其中4 km2的水塘外,均作為建筑或綠化用地,試求這個開發(fā)區(qū)的建筑及綠化用地的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD的對角線相交于點O,DE∥CA,AE∥BD.

(1)求證:四邊形AODE是菱形;
(2)若將題設中“矩形ABCD”這一條件改為“菱形ABCD”,其余條件不變,則四邊形AODE的形狀是什么?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于F,連結BF.

(1)求證:CF=BD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

順次連接四邊形ABCD各邊中點,得到四邊形EFGH ,要使四邊形EFGH是矩形,應添加的條件是(   )
A.AD∥BCB.AC= BDC.AC⊥BDD.AD=AB

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在正方形ABCD中,以BC為邊在正方形外部作等邊三角形BCE,連結DE,則∠CDE的度數(shù)為      °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知四邊形ABCD是邊長為2的菱形,∠BAD=60°,對角線AC與BD交于點O,過點O的直線EF交AD于點E,交BC于點F.

(1)求證:△AOE≌△COF;
(2)若∠EOD=30°,求CE的長.

查看答案和解析>>

同步練習冊答案