如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于F,連結(jié)BF.

(1)求證:CF=BD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并證明你的結(jié)論.
(1)詳見解析 ;(2)四邊形CDBF是正方形,證明詳見解析.

試題分析:(1)首先證明△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)得:AD=CF,又AD=BD,所以CF=BD.(2)由(1)知AD=CF,從而得到:CF與DB平行且相等.再根據(jù)平行四邊形的判定定理得四邊形CDBF是平行四邊形,再根據(jù)等腰三角形“三線合一”的性質(zhì),可得:CD=BD,∠CDB=90°,根據(jù)“一組鄰邊相等的平行四邊形是菱形”可知CDBF是菱形,再根據(jù)“有一個角是直角的平行四邊形是矩形”可知四邊形CDBF是矩形,所以它是正方形.
試題解析:(1)∵AB∥CF
∴∠EAD=∠EFC, ∠ADE=∠FCE,
∵DE=CE
∴△ADE≌FCE
∴AD=CF
∵AD=BD
∴BD=CF
(2)由(1)知BD=CF
又∵BD∥CF
∴四邊形CDBF是平行四邊形
∵CA=CB,AD=BD
∴∠CDB=90°,CD=BD=AD
∴四邊形CDBF是正方形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD、BEFG均為正方形.

(1)如圖1,連接AG、CE,試判斷AG和CE的數(shù)量關(guān)系和位置關(guān)系并證明.
(2)將正方形BEFG繞點B順時針旋轉(zhuǎn)β角(0°<β<180°),如圖2,連接AG、CE相交于點M,連接MB,當(dāng)角β發(fā)生變化時,∠EMB的度數(shù)是否發(fā)生變化?若不變化,求出∠EMB的度數(shù);若發(fā)生變化,請說明理由.
(3)在(2)的條件下,過點A作AN⊥MB交MB的延長線于點N,請直接寫出線段CM與BN的數(shù)量關(guān)系      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

探究:已知平行四邊形ABCD的面積為100,M是AB所在直線上的一點
(1)如圖1:當(dāng)點M與B重合時,S△DCM =________;

(2)如圖2:當(dāng)點M與B與A均不重合時,S△DCM =________

(3)如圖3:當(dāng)點M在AB(或BA)的延長線上時,S△DCM =________

推廣:平行四邊形ABCD的面積為a,E、F為兩邊DC、BC延長線上兩點,連接DF、AF、AE、BE.求出圖4中陰影部分的面積,并簡要說明理由

應(yīng)用:如圖5是某廣場的一平行四邊形綠地ABCD,PQ、MN分別平行DC、AD,PQ、MN交于O點,其中S四邊形AM OP=300m2,S四邊形MBQO=400m2,S四邊形NCQO=700m2.現(xiàn)進行綠地改造,在綠地內(nèi)部做一個三角形區(qū)域MQD,連接DM、QD、QM,(圖中陰影部分)種植不同的花草,求三角形DMQ區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,小紅用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).求EC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD是對角線互相垂直的四邊形,且OB=OD,請你添加一個適當(dāng)?shù)臈l件        ,使四邊形ABCD成為菱形(只需添加一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當(dāng)△ODP是腰長為5的等腰三角形時,則P點的坐標為               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形紙片ABCD中,AB=12,BC=5,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點E、F、G、H分別是任意四邊形ABCD中AD、BD、BC、CA的中點,當(dāng)四邊形ABCD的邊至少滿足            條件時,四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,?ABCD中,點E、F分別在AD、BC上,且AE=CF.求證:BE=DF.

查看答案和解析>>

同步練習(xí)冊答案