【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.
【答案】
(1)DM=ME,DM⊥ME
(2)
如圖2,連接AE,
∵四邊形ABCD和ECGF是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE和EC在同一條直線上,
在Rt△ADF中,AM=MF,
∴DM=AM=MF,∠MDA=∠MAD,
∴∠DMF=2∠DAM.
在Rt△AEF中,AM=MF,
∴AM=MF=ME,
∴DM=ME.
∵∠MDA=∠MAD,∠MAE=∠MEA,
∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.
∴DM⊥ME
【解析】猜想:DM=ME
證明:如圖1,延長EM交AD于點H,
∵四邊形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,F(xiàn)M=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
如圖1,延長EM交AD于點H,
∵四邊形ABCD和CEFG是正方形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,F(xiàn)M=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
∵四邊形ABCD和CEFG是正方形,
∴AD=CD,CE=CF,
∵△FME≌△AMH,
∴EF=AH,
∴DH=DE,
∴△DEH是等腰直角三角形,
又∵M(jìn)H=ME,
故答案為:DM=ME,DM⊥ME.
猜想:延長EM交AD于點H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜邊的中線等于斜邊的一半證明.(1)延長EM交AD于點H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜邊的中線等于斜邊的一半證明,(2)連接AE,AE和EC在同一條直線上,再利用直角三角形中,斜邊的中線等于斜邊的一半證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰RtABC 中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點P,連接PC,若△ABC的面積為8cm2,則△BPC的面積為( )
A. 4cm2 B. 5cm2 C. 6cm2 D. 7cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列做法正確的是( 。
A. 由2(x+1)=x+7去括號、移項、合并同類項,得x=5
B. 由=1+去分母,得2(2x﹣1)=1+3(x﹣3)
C. 由2(2x﹣1)﹣3(x﹣3)=1去括號,得4x﹣2﹣3x﹣9=1
D. 由7x=4x﹣3移項,得7x﹣4x=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,延長AB到點E,使BE=AB,連接DE交BC于點F,則下列結(jié)論不一定成立的是( )
A.∠E=∠CDF
B.EF=DF
C.AD=2BF
D.BE=2CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點,與雙曲線y2= (x>0)交于點C,過點C作CD⊥x軸,且OA=AD,則以下結(jié)論: ①當(dāng)x>0時,y1隨x的增大而增大,y2隨x的增大而減小;
②k=4;
③當(dāng)0<x<2時,y1<y2;
④如圖,當(dāng)x=4時,EF=4.
其中正確結(jié)論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com