【題目】如圖,在ABCD中,延長AB到點E,使BE=AB,連接DE交BC于點F,則下列結(jié)論不一定成立的是( )
A.∠E=∠CDF
B.EF=DF
C.AD=2BF
D.BE=2CF
【答案】D
【解析】解:∵四邊形ABCD是平行四邊形, ∴CD//AB,
∴∠E=∠CDF,(故A成立);
∵四邊形ABCD是平行四邊形,
∴CD=AB,CD//BE,
∴∠C=∠CBE,
∵BE=AB,
∴CD=EB,
在△CDF和△BEF中,
,
∴△DCF≌△EBF(AAS),
∴EF=DF,(故B成立);
∵△DCF≌△EBF,
∴CF=BF= BC,
∵AD=BC,
∴AD=2BF,(故C成立);
∵AD≠BE,
∴2CF≠BE,(故D不成立);
故選:D.
首先根據(jù)平行四邊形的性質(zhì)可得CD//AB,再根據(jù)平行線的性質(zhì)可得∠E=∠CDF;首先證明△DCF≌△EBF可得EF=DF;根據(jù)全等可得CF=BF= BC,再利用等量代換可得AD=2BF;根據(jù)題意不能證明AD=BE,因此BE不一定等于2CF.
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應的大括號內(nèi):
﹣5,|-|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),
(1)正數(shù)集合:{ …}
(2)負數(shù)集合:{ …}
(3)整數(shù)集合:{ …}
(4)分數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題
(1)計算:4sin60°+|3﹣ |﹣( )﹣1+(π﹣2017)0 .
(2)先化簡,再求值:( ﹣1)÷ ,其中x的值從不等式組 的整數(shù)解中任選一個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求,商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過C作CD⊥AD于D,交AB的延長線于E.
(1)求證:直線CD為⊙O的切線;
(2)當AB=2BE,且CE= 時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,,點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是,連接PQ、AQ、設點P、Q運動的時間為ts.
當t為何值時,四邊形ABQP是矩形;
當t為何值時,四邊形AQCP是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB是平角,∠DOE=90°,OC平分∠DOB.
(1)若∠AOE=32°,求∠BOC的度數(shù);
(2)若OD是∠AOC的角平分線,求∠AOE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com