【題目】如圖,AB為⊙O的直徑,C、D兩點(diǎn)均在⊙O上,過(guò)點(diǎn)CCEAD于點(diǎn)E,且AC平分∠BAD.

(1)求證:CE為⊙O的切線;

(2)連結(jié)BDAC于點(diǎn)F,若CF=5,sin∠CAD=,求線段BD的長(zhǎng).

【答案】(1)見解析;(2) .

【解析】分析:(1連結(jié)OCBD于點(diǎn)G.證明∠ECA+ACO=90°即可得到結(jié)論;

2)設(shè)DF=3x,則AF=5x,AD=4x.由CAD=ACO,得到sinFCG=進(jìn)而表示出BG,OGOBRtOBG中,由勾股定理得到OB2=OG2+BG2,解方程即可得出結(jié)論.

詳解1連結(jié)OCBD于點(diǎn)G

AC平分BAD,∴∠CAD=CAB

OA=OC,∴∠CAB=ACO

CEAD, ∴∠E=90°,∴∠EAC+ECA=90°,

∴∠ECA+ACO=90°,∴CEO的切線

2)設(shè)DF=3x,則AF=5x,AD=4x

ABO的直徑,∴∠ADB=90°,∴BDCE,∴OCBD

∵∠CAD=ACO,∴sinFCG=

CF=5,∴CG=4,FG=3,∴DG=BG=3x+3

OCAE,∴OG=AD=2x,∴OC=OB=4+2x

RtOBG中,OB2=OG2+BG2,∴(4+2x)2=(2x)2+(3x+3)2

x=-1

又∵x>0,∴x=,∴BD=2BG=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成一項(xiàng)工作,如果安排兩個(gè)人合做,要天才能完成.開始先安排一些人做天后,又增加人和他們一起做天,結(jié)果完成了這項(xiàng)工作的一半,假設(shè)這些人的工作效率相同.

1)開始安排了多少名工人?

2)如果要求再用天做完剩余的全部工作,還需要再增加幾人一起做?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰RtABC,使BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的頂點(diǎn)A、B坐標(biāo)分別為(1,1)、(3,1),若把等邊△ABC先沿x軸翻折,再向左平移1個(gè)單位”為第一次変換,則這樣連續(xù)經(jīng)過(guò)2017次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平移和翻折是初中數(shù)學(xué)兩種重要的圖形變化.

(1)平移運(yùn)動(dòng)

①把筆尖放在數(shù)軸的原點(diǎn)處,先向負(fù)方向移動(dòng)3個(gè)單位長(zhǎng)度,再向正方向移動(dòng)個(gè)單位長(zhǎng)度,這時(shí)筆尖的位置表示什么數(shù)?用算式表示以上過(guò)程及結(jié)果是( )

A. B.

C. D.

②一機(jī)器人從原點(diǎn)O開始,第1次向左跳1個(gè)單位,緊接著第2次向右跳2個(gè)單位,第3次向左跳3個(gè)單位,第4次向右跳4個(gè)單位,……,依次規(guī)律跳,當(dāng)它跳2019次時(shí),落在數(shù)軸上的點(diǎn)表示的數(shù)是_____.

(2)翻折變換

①若折疊紙條,表示-1的點(diǎn)與表示3的點(diǎn)重合,則表示2019的點(diǎn)與表示_______的點(diǎn)重合.

②若數(shù)軸上A、B兩點(diǎn)之間的距離為2019(AB的左側(cè),且折痕與①折痕相同),且A、B兩點(diǎn)經(jīng)折疊后重合,則A點(diǎn)表示_____B點(diǎn)表示______.

③若數(shù)軸上折疊重合的兩點(diǎn)的數(shù)分別為a,b,折疊中間點(diǎn)表示的數(shù)為____.(用含有a,b的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)問(wèn)題:用邊長(zhǎng)相等的正三角形、正方形和正六邊形能否進(jìn)行平面圖形的鑲嵌?

問(wèn)題探究:為了解決上述數(shù)學(xué)問(wèn)題,我們采用分類討論的思想方法去進(jìn)行探究.

探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進(jìn)行平面圖形的鑲嵌?

第一類:選正三角形.因?yàn)檎切蔚拿恳粋(gè)內(nèi)角是60°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有6個(gè)正三角形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形可以進(jìn)行平面圖形的鑲嵌.

第二類:選正方形.因?yàn)檎叫蔚拿恳粋(gè)內(nèi)角是90°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有4個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正方形也可以進(jìn)行平面圖形的鑲嵌.

第三類:選正六邊形.(仿照上述方法,寫出探究過(guò)程及結(jié)論)

探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進(jìn)行平面圖形的鑲嵌?

第四類:選正三角形和正方形

在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正三角形和y個(gè)正方形的內(nèi)角可以拼成個(gè)周角.根據(jù)題意,可得方程

60x+90y360

整理,得2x+3y12

我們可以找到唯一組適合方程的正整數(shù)解為.

鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著3個(gè)正三角形和2個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形和正方形可以進(jìn)行平面鑲嵌

第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過(guò)程及結(jié)論)

第六類:選正方形和正六邊形,(不寫探究過(guò)程,只寫出結(jié)論)

探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?

第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過(guò)程,只寫結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是矩形ABCD內(nèi)一點(diǎn),連接PA、PB、PC、PD,已知AB=3,BC=4,設(shè)PAB, PBC, PCD, PDA,的面積分別為,,, ,以下判斷: PA+PB+PC+PD的最小值為10;②若PAB≌△PCD,PAD≌△PBC ;③若=,=④若PAB∽△PDA,PA=2.4.其中正確的是_____________(把所有正確的結(jié)論的序號(hào)都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD交于點(diǎn)O,COE=90°,OC平分∠AOF,COF=35°.

(1)求∠BOD的度數(shù);

(2)OE平分∠BOF嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn)的坐標(biāo)分別是, ,點(diǎn)把線段三等分,延長(zhǎng)分別交于點(diǎn),連接, 則下列結(jié)論:; ③四邊形的面積為;,其中正確的有( .

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案