已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點D.
(1)如圖①,當直線l與⊙O相切于點C時,若∠DAC=30°,求∠BAC的大;
(2)如圖②,當直線l與⊙O相交于點E、F時,若∠DAE=18°,求∠BAF的大。
解:(1)如圖①,連接OC,
∵直線l與⊙O相切于點C,∴OC⊥l。
∵AD⊥l,∴OC∥AD。
∴∠OCA=∠DAC。
∵OA=OC,∴∠BAC=∠OCA。
∴∠BAC=∠DAC=30°。
(2)如圖②,連接BF,
∵AB是⊙O的直徑,∴∠AFB=90°。
∴∠BAF=90°-∠B。
∴∠AEF=∠ADE+∠DAE=90°+18°=108°。
在⊙O中,四邊形ABFE是圓的內接四邊形,
∴∠AEF+∠B=180°。∴∠B=180°-108°=72°。
∴∠BAF=90°-∠B=180°-72°=18°。
【解析】
試題分析:(1)如圖①,首先連接OC,根據(jù)當直線l與⊙O相切于點C,AD⊥l于點D.易證得OC∥AD,繼而可求得∠BAC=∠DAC=30°。
(2)如圖②,連接BF,由AB是⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可得∠AFB=90°,由三角形外角的性質,可求得∠AEF的度數(shù),又由圓的內接四邊形的性質,求得∠B的度數(shù),繼而求得答案。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
7 |
3 |
7 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com