已知,點(diǎn)P到⊙O的最短距離為3,最長的距離為9,求⊙O的半徑.

答案:3#6$6#3
解析:

解:(1)當(dāng)點(diǎn)P在⊙O內(nèi)時,如圖①,過P作直徑AB,則最短距離AP,最長距離PB,

半徑=

(2)如圖②,當(dāng)點(diǎn)P在⊙O外時,最短距離PB=3,最長距離PA=9,則半徑


提示:

分點(diǎn)P在⊙O的內(nèi)部和外部兩種情況.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沈陽)已知等邊三角形ABC的高為4,在這個三角形所在的平面內(nèi)有一點(diǎn)P,若點(diǎn)P到AB的距離是1,點(diǎn)P到AC的距離是2,則點(diǎn)P到BC的最小距離和最大距離分別是
1,7
1,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•赤峰)閱讀材料:
(1)對于任意兩個數(shù)a、b的大小比較,有下面的方法:
當(dāng)a-b>0時,一定有a>b;
當(dāng)a-b=0時,一定有a=b;
當(dāng)a-b<0時,一定有a<b.
反過來也成立.因此,我們把這種比較兩個數(shù)大小的方法叫做“求差法”.
(2)對于比較兩個正數(shù)a、b的大小時,我們還可以用它們的平方進(jìn)行比較:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)與(a-b)的符號相同
當(dāng)a2-b2>0時,a-b>0,得a>b
當(dāng)a2-b2=0時,a-b=0,得a=b
當(dāng)a2-b2<0時,a-b<0,得a<b
解決下列實(shí)際問題:
(1)課堂上,老師讓同學(xué)們制作幾種幾何體,張麗同學(xué)用了3張A4紙,7張B5紙;李明同學(xué)用了2張A4紙,8張B5紙.設(shè)每張A4紙的面積為x,每張B5紙的面積為y,且x>y,張麗同學(xué)的用紙總面積為W1,李明同學(xué)的用紙總面積為W2.回答下列問題:
①W1=
3x+7y
3x+7y
(用x、y的式子表示)
W2=
2x+8y
2x+8y
(用x、y的式子表示)
②請你分析誰用的紙面積最大.
(2)如圖1所示,要在燃?xì)夤艿纋上修建一個泵站,分別向A、B兩鎮(zhèn)供氣,已知A、B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設(shè)計(jì)兩種方案:

方案一:如圖2所示,AP⊥l于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長度a1=AB+AP.
方案二:如圖3所示,點(diǎn)A′與點(diǎn)A關(guān)于l對稱,A′B與l相交于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長度a2=AP+BP.
①在方案一中,a1=
(3+x)
(3+x)
km(用含x的式子表示);
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示);
③請你分析要使鋪設(shè)的輸氣管道較短,應(yīng)選擇方案一還是方案二.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個動點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),BC⊥AC于點(diǎn)C.已知AC=8,BC=3.
(1)線段AC的中點(diǎn)到原點(diǎn)的距離是
4
4
;
(2)點(diǎn)B到原點(diǎn)的最大距離是
9
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

已知,點(diǎn)P到⊙O的最短距離為3,最長的距離為9,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案