(2012•赤峰)閱讀材料:
(1)對(duì)于任意兩個(gè)數(shù)a、b的大小比較,有下面的方法:
當(dāng)a-b>0時(shí),一定有a>b;
當(dāng)a-b=0時(shí),一定有a=b;
當(dāng)a-b<0時(shí),一定有a<b.
反過(guò)來(lái)也成立.因此,我們把這種比較兩個(gè)數(shù)大小的方法叫做“求差法”.
(2)對(duì)于比較兩個(gè)正數(shù)a、b的大小時(shí),我們還可以用它們的平方進(jìn)行比較:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)與(a-b)的符號(hào)相同
當(dāng)a2-b2>0時(shí),a-b>0,得a>b
當(dāng)a2-b2=0時(shí),a-b=0,得a=b
當(dāng)a2-b2<0時(shí),a-b<0,得a<b
解決下列實(shí)際問(wèn)題:
(1)課堂上,老師讓同學(xué)們制作幾種幾何體,張麗同學(xué)用了3張A4紙,7張B5紙;李明同學(xué)用了2張A4紙,8張B5紙.設(shè)每張A4紙的面積為x,每張B5紙的面積為y,且x>y,張麗同學(xué)的用紙總面積為W1,李明同學(xué)的用紙總面積為W2.回答下列問(wèn)題:
①W1=
3x+7y
3x+7y
(用x、y的式子表示)
W2=
2x+8y
2x+8y
(用x、y的式子表示)
②請(qǐng)你分析誰(shuí)用的紙面積最大.
(2)如圖1所示,要在燃?xì)夤艿纋上修建一個(gè)泵站,分別向A、B兩鎮(zhèn)供氣,已知A、B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設(shè)計(jì)兩種方案:

方案一:如圖2所示,AP⊥l于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a1=AB+AP.
方案二:如圖3所示,點(diǎn)A′與點(diǎn)A關(guān)于l對(duì)稱,A′B與l相交于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a2=AP+BP.
①在方案一中,a1=
(3+x)
(3+x)
km(用含x的式子表示);
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示);
③請(qǐng)你分析要使鋪設(shè)的輸氣管道較短,應(yīng)選擇方案一還是方案二.
分析:(1)①根據(jù)題意得出3x+7y和2x+8y,即得出答案;②求出W1-W2=x-y,根據(jù)x和y的大小比較即可;
(2)①把AB和AP的值代入即可;②過(guò)B作BM⊥AC于M,求出AM,根據(jù)勾股定理求出BM.再根據(jù)勾股定理求出BA′,即可得出答案;
③求出a12-a22=6x-39,分別求出6x-39>0,6x-39=0,6x-39<0,即可得出答案.
解答:(1)解:①W1=3x+7y,W2=2x+8y,
故答案為:3x+7y,2x+8y.
      
②解:W1-W2=(3x+7y)-(2x+8y)=x-y,
∵x>y,
∴x-y>0,
∴W1-W2>0,
得W1>W(wǎng)2,
所以張麗同學(xué)用紙的總面積大. 
  
(2)①解:a1=AB+AP=x+3,
故答案為:x+3.
          
②解:過(guò)B作BM⊥AC于M,
則AM=4-3=1,
在△ABM中,由勾股定理得:BM2=AB2-12=x2-1,
在△A′MB中,由勾股定理得:AP+BP=A′B=
A′M2+BM2
=
x2+48
,
故答案為:
x2+48


③解:a12-a22=(x+3)2-(
x2+48
2=x2+6x+9-(x2+48)=6x-39,
當(dāng)a12-a22>0(即a1-a2>0,a1>a2)時(shí),6x-39>0,解得x>6.5,
當(dāng)a12-a22=0(即a1-a2=0,a1=a2)時(shí),6x-39=0,解得x=6.5,
當(dāng)a12-a22<0(即a1-a2<0,a1<a2)時(shí),6x-39<0,解得x<6.5,
綜上所述
當(dāng)x>6.5時(shí),選擇方案二,輸氣管道較短,
當(dāng)x=6.5時(shí),兩種方案一樣,
當(dāng)0<x<6.5時(shí),選擇方案一,輸氣管道較短.
點(diǎn)評(píng):本題考查了勾股定理,軸對(duì)稱-最短路線問(wèn)題,整式的運(yùn)算等知識(shí)點(diǎn)的應(yīng)用,通過(guò)做此題培養(yǎng)了學(xué)生的計(jì)算能力和閱讀能力,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•赤峰)因式分解:x3-xy2=
x(x-y)(x+y)
x(x-y)(x+y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•赤峰)甲、乙兩名運(yùn)動(dòng)員在相同的條件下各射靶10次,每次射靶的成績(jī)情況如圖所示:

(1)請(qǐng)你根據(jù)圖中數(shù)據(jù)填寫下表:
運(yùn)動(dòng)員 平均數(shù) 中位數(shù) 方差
7 7
1
1
7
7
7
2.6
(2)根據(jù)以上信息分析誰(shuí)的成績(jī)好些.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•赤峰)如圖,拋物線y=x2-bx-5與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)C與點(diǎn)F關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線AF交y軸于點(diǎn)E,|OC|:|OA|=5:1.
(1)求拋物線的解析式;
(2)求直線AF的解析式;
(3)在直線AF上是否存在點(diǎn)P,使△CFP是直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•郴州)閱讀下列材料:
    我們知道,一次函數(shù)y=kx+b的圖象是一條直線,而y=kx+b經(jīng)過(guò)恒等變形可化為直線的另一種表達(dá)形式:Ax+Bx+C=0(A、B、C是常數(shù),且A、B不同時(shí)為0).如圖1,點(diǎn)P(m,n)到直線l:Ax+By+C=0的距離(d)計(jì)算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求點(diǎn)P(1,2)到直線y=
5
12
x-
1
6
的距離d時(shí),先將y=
5
12
x-
1
6
化為5x-12y-2=0,再由上述距離公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列問(wèn)題:
    如圖2,已知直線y=-
4
3
x-4
與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=x2-4x+5上的一點(diǎn)M(3,2).
    (1)求點(diǎn)M到直線AB的距離.
    (2)拋物線上是否存在點(diǎn)P,使得△PAB的面積最。咳舸嬖,求出點(diǎn)P的坐標(biāo)及△PAB面積的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案