【題目】如圖,將正方形ABCD沿AE,AF折疊后,點(diǎn)B、D恰好重合于點(diǎn)G,測(cè)得CF=1,∠CFE=60°,則正方形的邊長(zhǎng)是_______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3.點(diǎn)M是AB邊上一點(diǎn),且∠CMB=45°.點(diǎn)Q是直線AB上一點(diǎn)且在點(diǎn)B的右側(cè),BQ=4,點(diǎn)P從點(diǎn)Q出發(fā),沿射線QA方向以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.以P為圓心,PC長(zhǎng)為半徑作半圓P,交直線AB分別于點(diǎn)G,H(點(diǎn)G在點(diǎn)H的左側(cè)).
(1)當(dāng)t=1秒時(shí),PC的長(zhǎng)為 ,t= 秒時(shí),半圓P與AD相切;
(2)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),求半圓P被矩形ABCD的對(duì)角線AC所截得的弦長(zhǎng);
(3)若∠MCP=15°,請(qǐng)直接寫出扇形HPC的弧長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對(duì)角線 AC 與 BD 交于點(diǎn) O,點(diǎn) E 在 AD 上,且 DE=CD,連接 OE,BE, ABE ACB ,若 AE=2,則 OE 的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把正方形紙片ABCD沿對(duì)邊上的兩點(diǎn)M、N所在的直線對(duì)折,使點(diǎn)B落在邊CD上的點(diǎn)E處,折痕為MN,其中CE=CD.若AB的長(zhǎng)為2,則MN的長(zhǎng)為( )
A.3B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】訂書機(jī)是由推動(dòng)器、托板、壓形器、底座、定位軸等組成.如圖1是一臺(tái)放置在水平桌面上的大型訂書機(jī),將其側(cè)面抽象成如圖2所示的幾何圖形.若壓形器EF的端點(diǎn)E固定于定位軸CD的中點(diǎn)處,在使用過程中,點(diǎn)D和點(diǎn)F隨壓形器及定位軸繞點(diǎn)C旋轉(zhuǎn),CO⊥AB于點(diǎn)O,CD=12cm連接CF,若∠FED=45°,∠FCD=30°.
(1)求FC的長(zhǎng);
(2)若OC=2cm求在使用過程中,當(dāng)點(diǎn)D落在底座AB上時(shí),請(qǐng)計(jì)算CD與AB的夾角及點(diǎn)F運(yùn)動(dòng)的路線之長(zhǎng).(結(jié)果精確到0.1cm,參考數(shù)據(jù):sin9.6°≈0.17.π≈3.14, 1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線相交于O,E是OD的中點(diǎn),DF∥AC交CE延長(zhǎng)線于點(diǎn)F,連接AF.
(1)求證:四邊形AODF是菱形.
(2)若∠AFC=90°,AB=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AB=4,點(diǎn)C是弧AB上的一動(dòng)點(diǎn)(不與A,B重合),過點(diǎn)B作⊙O的切線交AC的延長(zhǎng)線于點(diǎn)D,點(diǎn)E是BD的中點(diǎn),連接EC.
(1)若BD=8,求線段AC的長(zhǎng)度;
(2)求證:EC是⊙O的切線;
(3)當(dāng)∠D=30°時(shí),求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于兩點(diǎn),與軸交于,其中,點(diǎn)為拋物線上一動(dòng)點(diǎn),過點(diǎn)作平行交拋物線于,
(1)求拋物線的解析式;
(2)①當(dāng)兩點(diǎn)重合時(shí)時(shí),所在直線解析式為_____________.
②在①的條件下,取線段中點(diǎn),連接,判斷以點(diǎn)為頂點(diǎn)的四邊形是什么四邊形,并說明理由?
(3)已知,連接,軸,交于,軸上有一動(dòng)點(diǎn),,的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若中,其中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的一半,則稱為“半角三角形”.
(1)若為半角三角形,,則其余兩個(gè)角的度數(shù)為 .
(2)如圖1,在平行四邊形中,,點(diǎn)在邊上,以為折痕,將向上翻折,點(diǎn)恰好落在邊上的點(diǎn),若,求證:為半角三角形;
(3)如圖2,以的邊為直徑畫圓,與邊交于,與邊交于,已知的面積是面積的倍.
①求證:.
②若是半角三角形,,直接寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com