(2012•嘉定區(qū)一模)如圖,為了測量某建筑物AB的高度,小亮在教學樓DE的三樓找到一個觀測點C,利用三角板測得建筑物AB頂端A點的仰角為30°,底部B點的俯角為45°.若CD=9米,求建筑物AB的高度(結果精確到0.1米,參考數(shù)據
3
=1.73
).
分析:首先分析圖形,根據題意構造直角三角形.本題涉及多個直角三角形,應利用其公共邊構造關系式求解.
解答:解:過點C作CF⊥AB于F.
∵∠BCF=∠CBD=45°,CD=9,
∴CF=BD=CD=BF=9
在Rt△AFC中,
∵∠AEC=90°,∠ACF=30°,
∴AF=tan∠ACF•FC=9×
3
3
=3
3
,
∴AB=AF+BF=3
3
+9≈14.2(米).
所以,建筑物AB的高度約14.2米.
點評:考查了解直角三角形的應用-仰角俯角問題,本題要求學生借助俯角構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)在Rt△ABC中,∠C=90°,cosA=
3
5
,則sinA的值為
4
5
4
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)如果二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)二次函數(shù)y=2-(x+1)2的頂點坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)如圖,△ABC與△DEF的頂點均在方格紙中的小正方形方格(邊長為一個單位長)的頂點處,則△ABC
一定相似
一定相似
△DEF(在橫線上方填寫“一定相似”或“不一定相似”或“一定不相似”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)如圖,已知平行四邊形ABCD,點M是邊BC的中點.設
AB
=
a
AD
=
b
.用向量
a
、
b
表示向量
DM
DM
=
a
-
1
2
b
a
-
1
2
b

查看答案和解析>>

同步練習冊答案