【題目】某校要在一塊三角形空地上種植花草,如圖所示,AC=13 米、AB=14 米、BC=15 米, 若線段 CD 是一條引水渠,且點 D 在邊 AB 上.已知水渠的造價每米 150 元.問:點 D 與點 C 距離多遠時,水渠的造價最低?最低造價是多少元?
【答案】點D與點C距離12米時,水渠的造價最低,最低造價是1800元.
【解析】
當CD為AB邊上的高時,CD最短,從而水渠造價最低.過C作CD⊥AB于D,設AD=xm,則BD=(14-x)m.在Rt△ACD與Rt△BCD中,運用勾股定理得出CD2=AC2-AD2=BC2-BD2即可列出方程,解方程求出CD長再根據(jù)水渠的造價每米150元,進而求解即可.
過C作CD⊥AB于D,設AD=xm,
則BD=(14-x)m.
在Rt△ACD中,CD2=AC2-AD2,
在Rt△BCD中,CD2=BC2-BD2,
所以AC2-AD2=BC2-BD2,即132-x2=152-(14-x)2,
解得x=5,
則CD2=132-52,CD=12,
由于水渠的造價每米150元,所以最低造價是150×12=1800元.
答:點D與點C距離12米時,水渠的造價最低,最低造價是1800元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.
(1)求雙曲線的解析式;
(2)求點C的坐標,并直接寫出y1<y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:①13+(﹣22)﹣(﹣2)
②﹣4
③(×(﹣48)
④﹣14﹣(﹣1)[﹣23+(﹣3)2]
(2)化簡:①(3mn﹣2m2)+(﹣4m2﹣5mn)
②﹣(2a﹣3b)﹣2(﹣a+4b﹣1)
(3)先化簡再求值:7x2y﹣2(2x2y﹣3xy2)-(4x2y﹣xy2),其中x=﹣2,y=1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按擬定的價格進行試銷,通過對5天的試銷情況進行統(tǒng)計,得到如下數(shù)據(jù):
(1)通過對上面表格中的數(shù)據(jù)進行分析,發(fā)現(xiàn)銷量y(件)與單價(元/件)之間存在一次函數(shù)關系,求y關于的函數(shù)關系式(不需要寫出函數(shù)自變量的取值范圍);
(2)預計在今后的銷售中,銷量與單價仍然存在(2)中的關系,且該產品的成本是20元/件.為使工廠獲得最大利潤,該產品的單價應定為多少?
(3)為保證產品在實際試銷中銷售量不得低于30件,且工廠獲得得利潤不得低于400元,請直接寫出單價的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC 中,AB=15,AC=13,高 AD=12,則△ABC 的周長是( )
A. 42B. 32C. 42 或 32D. 42 或 37
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小梅在餐廳吃飯時,發(fā)現(xiàn)了一個有趣的問題:廚師喜歡將做好的油餅都切成一個個小扇形.小梅在想:如果第一次切去圓餅的一半,第二次切去剩余的一半,第三次繼續(xù)切去剩余的一半,……如圖所示.
(1)如果繼續(xù)這樣切下去,能把這張油餅切完嗎?為什么?
(2)如果依照上面的規(guī)律切了10次,那么剩下的油餅是整張油餅的幾分之幾?
(3)如果廚師照上述方式切了次,那么他一共將這張油餅切去了多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙、丙、丁四位同學給出了四種表示該長方形面積的多項式:
①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你認為其中正確的有( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,則△ADE的面積為( )
A.1 B.2 C.5 D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AB=2,動點D從B開始沿BC向點C運動,到達點C后停止運動,將△ABD繞點A旋轉后得到△ACE,則下列說法中,正確的是( 。
①DE的最小值為1;②ADCE的面積是不變的;③在整個運動過程中,點E運動的路程為2;④在整個運動過程中,△ADE的周長先變小后變大.
A. ①③④ B. ①②③ C. ②③④ D. ①②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com