【題目】如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點(diǎn),∠EAD=45°,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn)90°,得到△AFB,連接EF.
(1)求證:EF=ED;
(2)若AB=2,CD=1,求FE的長.
【答案】(1)見解析;(2)EF=.
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可求∠FAE=∠DAE=45°,即可證△AEF≌△AED,可得EF=ED;
(2)由旋轉(zhuǎn)的性質(zhì)可證∠FBE=90°,利用勾股定理和方程的思想可求EF的長.
(1)∵∠BAC=90°,∠EAD=45°,
∴∠BAE+∠DAC=45°,
∵將△ADC繞點(diǎn)A順時針旋轉(zhuǎn)90°,得到△AFB,
∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,
∴∠BAF+∠BAE=45°=∠FAE,
∴∠FAE=∠DAE,AD=AF,AE=AE,
∴△AEF≌△AED(SAS),
∴DE=EF
(2)∵AB=AC=2,∠BAC=90°,
∴BC=4,
∵CD=1,
∴BF=1,BD=3,即BE+DE=3,
∵∠ABF=∠ABC=45°,
∴∠EBF=90°,
∴BF2+BE2=EF2,
∴1+(3﹣EF)2=EF2,
∴EF=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與x軸的一個交點(diǎn)為A(3,0),另一個交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值;
(2)求點(diǎn)B的坐標(biāo);
(3)該二次函數(shù)圖像上有一點(diǎn)D(x,y)(其中,),使,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=2,AD=3,O為邊AD上一點(diǎn),以O為圓心,OA為半徑r作⊙O,過點(diǎn)B作⊙O的切線BF,F為切點(diǎn).
(1)如圖1,當(dāng)⊙O經(jīng)過點(diǎn)C時,求⊙O截邊BC所得弦MC的長度;
(2)如圖2,切線BF與邊AD相交于點(diǎn)E,當(dāng)FE=FO時,求r的值;
(3)如圖3,當(dāng)⊙O與邊CD相切時,切線BF與邊CD相交于點(diǎn)H,設(shè)△BCH、四邊形HFOD、四邊形FOAB的面積分別為S1、S2、S3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015德陽)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.
(1)求面料和里料的單價;
(2)該款外套9月份投放市場的批發(fā)價為150元/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進(jìn)入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費(fèi)用14元,為確保每件外套的利潤不低于30元.
①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費(fèi)用)
②進(jìn)入11月份以后,銷售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎(chǔ)上實(shí)施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎(chǔ)上實(shí)施價格上。阎獙VIP客戶的降價率和對普通客戶的提價率相等,結(jié)果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,邊長為10,.順次連結(jié)菱形各邊中點(diǎn),可得四邊形;順次連結(jié)四邊形各邊中點(diǎn),可得四邊形;順次連結(jié)四邊形各邊中點(diǎn),可得四邊形;按此規(guī)律繼續(xù)下去….則四邊形的周長是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0),則下面的四個結(jié)論,其中正確的個數(shù)為( 。
①2a+b=0②4a﹣2b+c<0③ac>0④當(dāng)y>0時,﹣1<x<4
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD繞點(diǎn)B逆時針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點(diǎn)H,延長DA交GF于點(diǎn)K.若正方形ABCD邊長為,則AK= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com