【題目】我們用表示不大于的最大整數(shù),例如:,;用表示大于的最小整數(shù),例如:,.解決下列問題:

1= ,,= ;

2)若=2,則的取值范圍是 ;若=1,則的取值范圍是 ;

3)已知滿足方程組,求,的取值范圍.

【答案】1)-5,4;(2;(3.

【解析】

試題(1)根據(jù)題目條件:用[a]表示不大于a的最大整數(shù),用<a>表示大于a的最小整數(shù),可分別求解;(2)根據(jù)[a]表示不大于a的最大整數(shù),可得[x]=2中的2≤x3,根據(jù)<a>表示大于a的最小整數(shù),可得<y=-1中,-2≤y-1;(3)先解方程組,求出[x]和<y>的值,然后求出xy的取值范圍.

試題解析:

解:(1)由題意得,[-4.5]=-5,<3.5=4;

2)因?yàn)?/span>[a]表示不大于a的最大整數(shù)且[x]=2,所以x的取值范圍是2≤x3;

因?yàn)椋?/span>a>表示大于a的最小整數(shù),且<y=-1, 所以y的取值范圍是-2≤y-1;

3)解方程組得:

[x]="-1," y=3 所以xy的取值范圍分別為-1≤x0,2≤y3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CA⊥AB,DB⊥AB,已知AC=2,AB=6,點(diǎn)P射線BD上一動點(diǎn),以CP為直徑作⊙O,點(diǎn)P運(yùn)動時,若⊙O與線段AB有公共點(diǎn),則BP最大值為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道不等式的兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.不等式組是否也具有類似的性質(zhì)呢?請解答下列問題.

1)完成下列填空:

已知

用“<”或“>”填空

5+2_____3+1

31_____52

12_____4+1

2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請你說明上述性質(zhì)的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D是BC邊上的一點(diǎn),∠B=44°,∠BAD=28°,將ABD沿AD折疊得到AED,AE與BC交于點(diǎn)F.

(1)填空:∠AFC=   度;

(2)EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天放學(xué)后,小紅步行,小麗騎自行車沿同一條筆直的馬路到圖書館看書,圖中線段OA、BC分別表示小紅、小麗離開學(xué)校的路程s(米)與小紅所用的時間t(分鐘)的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:

(1)小麗比小紅遲出發(fā)   分鐘,小紅步行的速度是   /分鐘;(直接寫出結(jié)果)

(2)兩人在路上相距不超過200米的時間有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論: ①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),
其中正確結(jié)論的個數(shù)是(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線經(jīng)過原點(diǎn)和點(diǎn),點(diǎn)的坐標(biāo)為.

(1)求直線所對應(yīng)的函數(shù)解析式;

(2)當(dāng)P在線段OA上時,設(shè)點(diǎn)橫坐標(biāo)為,三角形的面積為,寫出關(guān)于的函數(shù)解析式,并指出自變量的取值范圍;

(3)當(dāng)P在射線OA上時,在坐標(biāo)軸上有一點(diǎn),使正整數(shù)),請直接寫出點(diǎn)的坐標(biāo)(本小題只要寫出結(jié)果,不需要寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點(diǎn)B恰好落在邊AC上,與點(diǎn)B′重合,AE為折痕,則EB′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,OP平分∠AOB,PC⊥OB于點(diǎn)C.若OC=2,則PC的長是

查看答案和解析>>

同步練習(xí)冊答案