【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設四邊形APEC的面積為y(cm2),求y與t之間的函數關系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
【答案】
(1)t=2
(2)當t = 3時,y最小=
(3)當t = 1s,點P、Q、F三點在同一條直線上
【解析】
解:(1)∵點A在線段PQ的垂直平分線上,
∴AP = AQ.
∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,
∴∠EQC = 45°.
∴∠DEF =∠EQC.
∴CE = CQ.
由題意知:CE = t,BP =2 t,
∴CQ = t.
∴AQ = 8-t.
在Rt△ABC中,由勾股定理得:AB = 10 cm .
則AP = 10-2 t.
∴10-2 t = 8-t.
解得:t = 2.
答:當t = 2 s時,點A在線段PQ的垂直平分線上. 4分
(2)過P作,交BE于M,∴.
在Rt△ABC和Rt△BPM中,,
∴ . ∴PM = .
∵BC = 6 cm,CE = t, ∴ BE = 6-t.
∴y = S△ABC-S△BPE =-= -
= = .
∵,∴拋物線開口向上.
∴當t = 3時,y最小=.
答:當t = 3s時,四邊形APEC的面積最小,最小面積為cm2.8分
(3)假設存在某一時刻t,使點P、Q、F三點在同一條直線上.
過P作,交AC于N,
∴.
∵,∴△PAN ∽△BAC.
∴.
∴.
∴,.
∵NQ = AQ-AN,
∴NQ = 8-t-() = .
∵∠ACB = 90°,B、C(E)、F在同一條直線上,
∴∠QCF = 90°,∠QCF = ∠PNQ.
∵∠FQC = ∠PQN,
∴△QCF∽△QNP .
∴ . ∴ .
∵ ∴
解得:t = 1.
答:當t = 1s,點P、Q、F三點在同一條直線上. 12分
科目:初中數學 來源: 題型:
【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動:購買原價超過500元的商品,超過500元的部分可以享受打折優(yōu)惠.若購買商品的實際付款金額y(單位:元)與商品原價x(單位:元)的函數關系的圖像如圖所示,則超過500元的部分可以享受的優(yōu)惠是( )
A. 打六折B. 打七折C. 打八折D. 打九折
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當﹣1<x<3時,y>0,其中正確的個數為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=x+m (m為常數)的圖像與x軸交于點A(-3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數,且a≠0)經過A、C兩點,并與x軸的正半軸交于點B.
(1)求m的值及拋物線的函數表達式;
(2)若P是拋物線對稱軸上一動點,△ACP周長最小時,求出P的坐標;
(3)是否存在拋物在線一動點Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點Q的橫坐標;若不存在,請說明理由;
(4)在(2)的條件下過點P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點,試問是否為定值,如果是,請直接寫出結果,如果不是請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,點E為AB的中點,F為BC上任意一點,把△BEF沿直線EF翻折,點B的對應點B′落在對角線AC上,則與∠FEB一定相等的角(不含∠FEB)有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法:
①一顆質地均勻的骰子已連續(xù)拋擲了次,其中,拋擲出點的次數最少,則第次一定拋擲出點.
②可能性很小的事件在一次實驗中也有可能發(fā)生.
③天氣預報說明天下雨的概率是,意思是說明天將有一半時間在下雨.
④拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等.
正確的是________(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,點D,F分別是AC,AB的中點,CE∥DB,BE∥DC.
(1)求證:四邊形DBEC是菱形;
(2)若AD=3,DF=1,求四邊形DBEC面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的方格紙中,有一個以格點為頂點的△ABC.
(1)△ABC的形狀是 .
(2)利用網格線畫△A′B′C′,使它與△ABC關于直線l對稱.
(3)在直線l上求作點P使AP+CP的值最小,則AP+CP的最小值= .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com