【題目】如圖,在正方形ABCD中,AB=2,點(diǎn)M為正方形ABCD的邊CD上的動(dòng)點(diǎn)(與點(diǎn)C,D不重合),連接BM,作MF⊥BM,與正方形ABCD的外角∠ADE的平分線交于點(diǎn)F.設(shè)CM=x,△DFM的面積為y,則y與x之間的函數(shù)關(guān)系式為________________

【答案】y=-

【解析】

BC上截取CH=CM,連接MH,則△MCH是等腰直角三角形,BH=MD,證出∠BHM=∠MDF,∠1=∠2,由ASA證明△BHM≌△MDF,再根據(jù)三角形面積公式求解即可.

證明:∵四邊形ABCD是正方形,

∴CD=BC,∠C=∠CDA=90°=∠ADE,

∵DF平分∠ADE,

∴∠ADF=∠ADE=45°,

∴∠MDF=90°+45°=135°.

BC上截取CH=CM,連接MH,如圖,

則△MCH是等腰直角三角形,BH=MD,∴∠CHM=∠CMH=45°,

∴∠BHM=135°,

∴∠1+∠HMB=45°,∠BHM=∠MDF,

∵FM⊥BM,

∴∠FMB=90°,

∴∠2+∠BMH=45°,

∴∠1=∠2.

在△BHM與△MDF中,

∴△BHM≌△MDF(ASA),

∴BH=MD=2-x,

∴yx之間的函數(shù)關(guān)系式為y=x(2-x)=-x2+x.

故答案為:y=-x2+x.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過(guò)點(diǎn)C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)PM、N分別和點(diǎn)OB、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MFx軸于點(diǎn)F,若線段MFBF12,求點(diǎn)M、N的坐標(biāo);

③點(diǎn)Q在拋物線的對(duì)稱(chēng)軸上,以Q為圓心的圓過(guò)AB兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),連接DF,過(guò)點(diǎn)EEHDF,垂足為H,EH的延長(zhǎng)線交DC于點(diǎn)G.

(1)猜想DGCF的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)過(guò)點(diǎn)HMNCD,分別交AD,BC于點(diǎn)M,N,若正方形ABCD的邊長(zhǎng)為10,點(diǎn)PMN上一點(diǎn),求△PDC周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,有兩定點(diǎn)、,是反比例函數(shù)圖象上動(dòng)點(diǎn),當(dāng)為直角三角形時(shí),點(diǎn)坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)的圖象過(guò)點(diǎn)

求該函數(shù)的解析式;

過(guò)點(diǎn)分別向軸和軸作垂線,垂足為,求四邊形的面積;

求證:過(guò)此函數(shù)圖象上任意一點(diǎn)分別向軸和軸作垂線,這兩條垂線與兩坐標(biāo)軸所圍成矩形的面積為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABE≌△ACD.

(1)如果BE=6,DE=2,求BC的長(zhǎng);

(2)如果∠BAC=75°,BAD=30°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.

(1)延長(zhǎng)MP交CN于點(diǎn)E(如圖②).

①求證:△BPM≌△CPE;

②求證:PM=PN;

(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖③的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;

(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是直線BC上一動(dòng)點(diǎn)(不與點(diǎn)BC重合),在AD右側(cè)作ADE,使得AD=AE,∠DAE=BAC,聯(lián)結(jié)DE,CE。

1)當(dāng)點(diǎn)DBC邊上時(shí),求證:EC=DB;

2)當(dāng)ECAB,若ABD的最小角為20°,請(qǐng)寫(xiě)出ADB的度數(shù),并對(duì)其中一個(gè)答案加以證明。

答:∠ADB的度數(shù)除了20°,還可能是 (直接寫(xiě)出所有答案,并對(duì)其中一個(gè)答案加以證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) AB的坐標(biāo)分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.

(1)圖1中,點(diǎn)C的坐標(biāo)為 ;

(2)如圖2,點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)E在射線CD上,過(guò)點(diǎn)BBFBEy軸于點(diǎn)F

①當(dāng)點(diǎn)E為線段CD的中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo);

②當(dāng)點(diǎn)E在第二象限時(shí),請(qǐng)直接寫(xiě)出F點(diǎn)縱坐標(biāo)y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案