【題目】如圖,正方形ABCD中,AB6,EAB的中點,將△ADE沿DE翻折得到△FDE,延長EFBCGFHBC,垂足為H,連接BFDG.以下結(jié)論:BFED;DFG≌△DCG;FHB∽△EADtan∠GEB;SBFG2.6;其中正確的個數(shù)是( )

A. 2B. 3C. 4D. 5

【答案】C

【解析】

利用正方形的性質(zhì)和折疊的性質(zhì)可得∠AED=∠FED,ADFD,AEEF,∠A=∠DFE即可判定①;證明RtDFGRtDCG即可判定②;證明FHB∽△EAD,即可判定③;設(shè)FGCGx,則BG6x,EG3+x,再利用勾股定理即可判定④;設(shè)FHa,則HG42a,再利用勾股定理即可判定⑤

∵正方形ABCD中,AB6,EAB的中點

ADDCBCAB6,AEBE3,∠A=∠C=∠ABC90°

∵△ADE沿DE翻折得到FDE

∴∠AED=∠FEDADFD6,AEEF3,∠A=∠DFE90°

BEEF3,∠DFG=∠C90°

∴∠EBF=∠EFB

∵∠AED+FED=∠EBF+EFB

∴∠DEF=∠EFB

BFED

故結(jié)論①正確;

ADDFDC6,∠DFG=∠C90°DGDG

RtDFGRtDCG

∴結(jié)論②正確;

FHBC,∠ABC90°

ABFH,∠FHB=∠A90°

∵∠EBF=∠BFH=∠AED

∴△FHB∽△EAD

∴結(jié)論③正確;

RtDFGRtDCG

FGCG

設(shè)FGCGx,則BG6xEG3+x

RtBEG中,由勾股定理得:32+(6x)2(3+x)2

解得:x2

BG4

tanGEB

故結(jié)論④正確;

∵△FHB∽△EAD,且

BH2FH

設(shè)FHa,則HG42a

RtFHG中,由勾股定理得:a2+(42a)222

解得:a2(舍去)a

SBFG×4×2.4

故結(jié)論⑤錯誤;

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列7個代數(shù)式,abac,中,其值為正的式子的個數(shù)為(

A. 2B. 3C. 4D. 4個以上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作體驗:如圖,在矩形ABCD中,點E、F分別在邊AD、BC上,將矩形ABCD沿直線EF折疊,使點D恰好與點B重合,點C落在點C.P為直線EF上一動點(不與E、F重合),過點P分別作直線BEBF的垂線,垂足分別為點MN,以PM、PN為鄰邊構(gòu)造平行四邊形PMQN.

(1)如圖1,求證:BEBF;

(2)特例感知:如圖2,若DE5,CF2,當點P在線段EF上運動時,求平行四邊形PMQN的周長;

(3)類比探究:若DEa,CFb.

①如圖3,當點P在線段EF的延長線上運動時,試用含a、b的式子表示QMQN之間的數(shù)量關(guān)系,并證明;

②如圖4,當點P在線段FE的延長線上運動時,請直接用含a、b的式子表示QMQN之間的數(shù)量關(guān)系.(不要求寫證明過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有學生3000人,現(xiàn)欲開展學校社團活動,準備組建攝影社、國學社、籃球社、科技制作社四個社團.每名學生最多只能報一個社團,也可以不報.為了估計各社團人數(shù),現(xiàn)在學校隨機抽取了50名學生做問卷調(diào)查,得到了如圖所示的兩個不完全統(tǒng)計圖.

結(jié)合以上信息,回答下列問題:

1)本次抽樣調(diào)查的樣本容量是_____;

2)請你補全條形統(tǒng)計圖,并在圖上標明具體數(shù)據(jù);

3)求參與科技制作社團所在扇形的圓心角度數(shù);

4)請你估計全校有多少學生報名參加籃球社團活動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將放在每個小正方形的邊長為1的網(wǎng)格中,點、均落在格點上,角的一邊與水平方向的網(wǎng)格線重合,另一邊經(jīng)過格點.

(Ⅰ)等于__________

(Ⅱ)如果內(nèi)部的一個銳角,且,請在如圖所示的網(wǎng)格中,借助無刻度的直尺畫出,使得,并簡要說明是如何找到的(不要求證明)__________________________________________________________________________________________________________________________________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,延長AD至點E,使DEAD,連接BD

1)求證:四邊形BCED是平行四邊形;

2)若DADB2cosA,求點B到點E的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yx2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C,且關(guān)于直線x1對稱,點A的坐標為(﹣10).

1)求二次函數(shù)的表達式;

2)連接BC,若點Py軸上時,BPBC的夾角為15°,求線段CP的長度;

3)當axa+1時,二次函數(shù)yx2+bx+c的最小值為2a,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某足球隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)足球運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

()本次接受調(diào)查的足球運動員人數(shù)為______,圖①中的值為______;

()求統(tǒng)計的這組足球運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題:

①若是完全平方式,則

②若三點在同一直線上,則

③等腰三角形一邊上的中線所在的直線是它的對稱軸;

④一個多邊形的內(nèi)角和是它的外角和的倍,則這個多邊形是六邊形.

其中真命題個數(shù)是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案