【題目】如圖,已知AD∥BC,AB⊥BC,AB=3.點(diǎn)E為射線 BC上一個(gè)動(dòng)點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)B′處,過點(diǎn)B′作AD的垂線,分別交AD,BC于點(diǎn)M,N.當(dāng)點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),BE的長為__________ .
【答案】或.
【解析】試題分析:根據(jù)題意可得四邊形ABNM是矩形,所以AB=MN=3,AM=BN,根據(jù)折疊的性質(zhì)可得AB=AB’,BE=B’E,點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),分兩種情況:①當(dāng)MB’=1,B’N=2時(shí),在Rt△AMB’中,由勾股定理求得AM=,設(shè)BE==B’E=x,在Rt△ENB’中,由勾股定理可得,解得x=;②當(dāng)MB’=2,B’N=1時(shí),在Rt△AMB’中,由勾股定理求得AM=,設(shè)BE==B’E=x,在Rt△ENB’中,由勾股定理可得,解得x=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長線上一點(diǎn),且BD=1,連接DA,點(diǎn)P是射線DA上的動(dòng)點(diǎn)。
(1)求證DA是⊙O的切線;
(2)DP的長度為多少時(shí),∠BPC的度數(shù)最大,最大度數(shù)是多少?請說明理由。
(3)點(diǎn)P運(yùn)動(dòng)的過程中,(PB+PC)的值能否達(dá)到最小,若能,求出這個(gè)最小值,若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=﹣2x﹣2.
(1)根據(jù)關(guān)系式畫出函數(shù)的圖象.
(2)求出圖象與x軸、y軸的交點(diǎn)A、B的坐標(biāo).
(3)求A、B兩點(diǎn)間的距離.
(4)求出△AOB的面積.
(5)y的值隨x值的增大怎樣變化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=AC=2.以AC為一邊,在△ABC外部作等腰直角三角形ACD,則線段BD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺如圖①擺放(在Rt△ABC中,∠ACB=90°,∠B=60°.Rt△DEF中,∠EDF=90°,∠E=45°).點(diǎn)D為AB的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過C,且BC=2.
(1)求證:△ADC∽△APD;
(2)求△APD的面積;
(3)如圖②,將△DEF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)角(0°<<60°),此時(shí)的等腰直角三角尺記為△DE′F′,DE′交AC于點(diǎn)M,DF′交BC于點(diǎn)N,試判斷的值是否會(huì)隨著的變化而變化,如果不變,請求出的值;反之,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)P在運(yùn)動(dòng)過程中速度不變,則以點(diǎn)B為圓心,線段BP長為半徑的圓的面積S與點(diǎn)P的運(yùn)動(dòng)時(shí)間t的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com