【題目】如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連接CE,AE,CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=10,BC=8,則線段CD的長為 .
【答案】(1)詳見解析;(2).
【解析】
(1)利用圓周角定理結合等腰三角形的性質得出∠OCF+∠DCB=90°,即可得出答案;
(2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質得出DC的長.
(1)證明:連接OC,
∵∠CEA=∠CBA,∠AEC=∠ODC,
∴∠CBA=∠ODC,
又∵∠CFD=∠BFO=90,
∴∠DCB=∠BOF,
∵CO=BO,
∴∠OCF=∠B,
∵∠B+∠BOF=90°,
∴∠OCF+∠DCB=90°,
∴直線CD為⊙O的切線;
(2)解:連接AC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠DCO=∠ACB=90°,
又∵∠D=∠B
∴△OCD∽△ACB,
∵∠ACB=90°,AB=10,BC=8,
∴AC=6,
∴,即,
解得;DC=,
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線與雙曲線(x>0)交于點.
(1)求a,k的值;
(2)已知直線過點且平行于直線,點P(m,n)(m>3)是直線上一動點,過點P分別作軸、軸的平行線,交雙曲線(x>0)于點、,雙曲線在點M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標都是整數的點叫做整點.
①當時,直接寫出區(qū)域內的整點個數;②若區(qū)域內的整點個數不超過8個,結合圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,E為CD邊上一點,∠DAE=30°,M為AE的中點,過點M作直線分別與AD、BC相交于點P、Q.若PQ=AE,則AP等于 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,點,,線段與軸平行,且,拋物線
(1)當時,求該拋物線與軸的交點坐標;
(2)當時,求的最大值(用含的代數式表示);
(3)當拋物線經過點時,的解析式為__________,頂點坐標為__________,點__________(填“是”或“否”)在上.
若線段以每秒2個單位長的速度向下平移,設平移的時間為(秒).
①若與線段總有公共點,求的取值范圍;
②若同時以每秒3個單位長的速度向下平移,在軸及其右側的圖象與直線總有兩個公共點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,函數的圖象記為,函數的圖象記為,其中為常數.圖象,合起來得到的圖象記為.
(1)當時,
①點在圖象上,求的值;
②求圖象與軸的交點坐標;
(2)當圖象的最低點到軸距離為時,求的值;
(3)已知線段的兩個端點坐標分別為,,當圖象與線段有兩個交點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次促銷活動中,某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(如圖,轉盤被平均分成份),并規(guī)定:顧客每購買元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉轉盤,那么可以直接獲得購物券元.
(1)求每轉動一次轉盤所獲購物券金額的平均數;
(2)如果你在該商場消費元,你會選擇轉轉盤還是直接獲得購物券?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在菱形ABCD中,點P是BC邊上一點,連接AP,點E,F是AP上的兩點,連接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.
求證:(1)△ABF≌△DAE;
(2)DE=BF+EF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數據繪制成如下兩幅不完整的統計圖.
請根據以上的信息,回答下列問題:
(1)補全扇形統計圖和條形統計圖;
(2)所抽查學生參加社會實踐活動天數的眾數是 (選填:A、B、C、D、E);
(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數不少于7天”的學生大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中 xOy 中,對于⊙C及⊙C內一點 P,給出如下定義:若存在過點 P 的直線 l,使得它與⊙C 相交所截得的弦長為,則稱點 P 為⊙C的“k-近內點”.
(1)已知⊙O的半徑為 4,
①在點中,⊙O的“4-近內點”是______________;
②點 P 在直線y=x上,若點 P 為⊙O的“4-近內點”,則點 P 的縱坐標y的取值范圍是____________;
(2)⊙C的圓心為(-1,0),半徑為 3,直線x 軸,y 軸分別交于 M,N,若線段 MN 上存在⊙C的 “2 -近內點”,則 b 的取值范圍是____________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com