【題目】已知:如圖,點(diǎn),,線段軸平行,且,拋物線

1)當(dāng)時(shí),求該拋物線與軸的交點(diǎn)坐標(biāo);

2)當(dāng)時(shí),求的最大值(用含的代數(shù)式表示);

3)當(dāng)拋物線經(jīng)過點(diǎn)時(shí),的解析式為__________,頂點(diǎn)坐標(biāo)為__________,點(diǎn)__________(填“是”或“否”)在上.

若線段以每秒2個(gè)單位長的速度向下平移,設(shè)平移的時(shí)間為(秒).

①若與線段總有公共點(diǎn),求的取值范圍;

②若同時(shí)以每秒3個(gè)單位長的速度向下平移,軸及其右側(cè)的圖象與直線總有兩個(gè)公共點(diǎn),直接寫出的取值范圍.

【答案】1,;(2)當(dāng)時(shí), 有最大值0,當(dāng)時(shí),有最大值;(3,,否;①;②

【解析】

1)當(dāng)k=1時(shí),該拋物線解析式y=x2-2x-3y=0時(shí),x2-2x-3=0,解得x1=-1,x2=3,該拋物線與x軸的交點(diǎn)坐標(biāo)(-1,0),(30);
2)拋物線y=kx2-2kx-3k的對稱軸直線x==1,當(dāng)k0時(shí),x=3時(shí),y有最大值,y最大值=9k-6k-3k=0,當(dāng)k0時(shí),x=1時(shí),y有最大值,y最大值=k-2k-3k=-4k;
3)當(dāng)拋物線經(jīng)過點(diǎn)C03)時(shí),拋物線的解析式為y=-x2+2x+3,頂點(diǎn)坐標(biāo)(1,4),A-4,-1),將x=-2代入y=-x2+2x+3,y=-5≠-1,點(diǎn)B不在l上;
①設(shè)平移后B-2,-1-2t),A-4-1-2t),當(dāng)拋物線經(jīng)過點(diǎn)B時(shí),有y=-5,當(dāng)拋物線經(jīng)過點(diǎn)A時(shí),有y=-21,l與線段AB總有公共點(diǎn),則-21≤-1-2t≤-5,解得2≤t≤10;
②平移過程中,設(shè)C0,3-3t),則拋物線的頂點(diǎn)(14-3t),于是 ,解得4≤t5

解:(1)當(dāng)時(shí),拋物線解析式為,

當(dāng)時(shí),,解得,

所以該拋物線與軸的交點(diǎn)的坐標(biāo)為,

2)拋物線的對稱軸為直線,

當(dāng)時(shí),時(shí),,有最大值0

當(dāng)時(shí),時(shí),,有最大值;

3,否;

①設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

當(dāng)拋物線經(jīng)過點(diǎn)時(shí),有,

當(dāng)拋物線經(jīng)過點(diǎn)時(shí),有,

當(dāng)拋物線與線段總有公共點(diǎn)時(shí),有,

解得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+5的圖象與反比例函數(shù)y=kx-1k≠0)在第一象限的圖象交于A1,n)和B兩點(diǎn).

1)求反比例函數(shù)的解析式與點(diǎn)B坐標(biāo);

2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑AB垂直弦CD于點(diǎn)E,過C點(diǎn)作CGADAB延長線于點(diǎn)G,連結(jié)CO并延長交AD于點(diǎn)F,且CFAD

1)求證:CG是⊙O的切線;

2)若AB=4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+by軸于點(diǎn)A,交x軸于點(diǎn)B,SAOB

1)求b的值;

2)點(diǎn)C以每秒1個(gè)單位長度的速度從O點(diǎn)出發(fā)沿x軸向點(diǎn)B運(yùn)動(dòng),點(diǎn)D以每秒2個(gè)單位長度的速度從A點(diǎn)出發(fā)沿y軸向點(diǎn)O運(yùn)動(dòng),CD兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)O時(shí),C,D兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接CD,設(shè)點(diǎn)C的運(yùn)動(dòng)時(shí)間為t秒,CDO的面積為S,求St的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

3)在(2)條件下,過點(diǎn)CCECDAB于點(diǎn)E,過點(diǎn)DDFx軸交AB于點(diǎn)F,過點(diǎn)FFHCE,垂足為H.在CH上取點(diǎn)M,使得MHHE833,連接FM,若∠FMHFEH,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正的邊長為2,頂點(diǎn)在半徑為的圓上,頂點(diǎn)在圓內(nèi),將正繞點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上時(shí),則點(diǎn)運(yùn)動(dòng)的路線長為__________(結(jié)果保留);若點(diǎn)落在圓上記做第1次旋轉(zhuǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上記做第2次旋轉(zhuǎn),再繞逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上,記做第3次旋轉(zhuǎn)……,若此旋轉(zhuǎn)下去,當(dāng)完成第2018次旋轉(zhuǎn)時(shí),邊共回到原來位置__________次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與、重合).以為邊向右側(cè)作正方形,連結(jié)

(猜想)如圖①,當(dāng)點(diǎn)在線段上時(shí),直接寫出、三條線段的數(shù)量關(guān)系.

(探究)如圖②,當(dāng)點(diǎn)在線段的延長線上時(shí),判斷、三條線段的數(shù)量關(guān)系,并說明理由.

(應(yīng)用)如圖③,當(dāng)點(diǎn)在線段的反向延長線上時(shí),點(diǎn)、分別在直線兩側(cè),、交點(diǎn)為點(diǎn)連結(jié),若,,則    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,OD⊥弦BC于點(diǎn)F,交O于點(diǎn)E,連接CE,AE,CD,若∠AEC=∠ODC

1)求證:直線CDO的切線;

2)若AB10,BC8,則線段CD的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是菱形的對角線上一動(dòng)點(diǎn),過作垂直于的直線交菱形的邊于、兩點(diǎn),設(shè),,則的面積為,則關(guān)于的函數(shù)圖象的大致形狀是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)坐標(biāo)為,并與軸交于點(diǎn),點(diǎn)是對稱軸與軸的交點(diǎn).

(1)求拋物線的解析式;

(2)如圖①所示, 是拋物線上的一個(gè)動(dòng)點(diǎn),且位于第一象限,連結(jié)BPAP,的面積的最大值;

(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點(diǎn),求出點(diǎn)的坐標(biāo);并探究:軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案