【題目】如圖坐標(biāo)系中,O0,0),A6,6),B12,0),將△OAB沿直線CD折疊,使點(diǎn)A恰好落在線段OB上的點(diǎn)E處,若OE,則ACAD的值是(  )

A.12B.23C.67D.78

【答案】B

【解析】

AAFOBF,根據(jù)已知條件得到AOB是等邊三角形,推出CEO∽△EDB,根據(jù)相似三角形的性質(zhì)得到,求出BEOBOE12,設(shè)CEa,則CAaCO12a,EDb,則ADb,DB12b,于是得到12b60a5ab,48a60b5ab,兩式相減得到48a12b60b60a,即可得到結(jié)論.

解:過AAFOBF,如圖所示:

A6,),B12,0),

AF,OF6OB12,

BF6,

OFBF

AOAB,

tanAOB

∴∠AOB60°,

∴△AOB是等邊三角形,

∴∠AOB=∠ABO60°

∵將OAB沿直線CD折疊,使點(diǎn)A恰好落在線段OB上的點(diǎn)E處,

∴∠CED=∠OAB60°,

∴∠OCE=∠DEB,

∴△CEO∽△EDB,

,

OE

BEOBOE12,

設(shè)CEa,則CAa,CO12aEDb,則ADbDB12b,

,

12b60a5ab①,48a60b5ab②,

②﹣①得:48a12b60b60a

,即ACAD23

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,AB6,AC8DAC中點(diǎn),EAB上的動(dòng)點(diǎn),將ED繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到FD,連CF,則線段CF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有若干個(gè)除顏色外其余均相同的紅、黃、藍(lán)三種顏色的小球,其中紅球2個(gè),籃球1個(gè),若從中任意摸出一個(gè)球,摸到球是紅球的概率為

1)求袋中黃球的個(gè)數(shù);

2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,求兩次摸到球的顏色是紅色與黃色這種組合(不考慮紅、黃球順序)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種賀卡原售價(jià)每張1元,甲商店這種賀卡七折優(yōu)惠,而在乙商店這種賀卡除了八折優(yōu)惠外,購買30張以上(含30張)免費(fèi)送5. 設(shè)一次買這種賀卡x張(x是正整數(shù)且30≤x≤50),若選擇在甲商店購買需用y1元,若選擇在乙商店購買需用y2.

1)假定你代購買45張這種賀卡,請(qǐng)確定應(yīng)在哪一個(gè)商店買花錢較少;

2)請(qǐng)分別寫出y1()x()、y2()x()之間的函數(shù)關(guān)系式;

3)在x的取值范圍內(nèi),試討論在哪一個(gè)商店買花錢較少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC≌△DEC,公共頂點(diǎn)為C,BDE上,則有結(jié)論①∠ACD=∠BCE=∠ABD;②∠DAC+DBC180°;③△ADC∽△BEC;④CDAB,其中成立的是( 。

A.①②③B.只有②④C.只有①和②D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,拋物線y=﹣x2+4x+m4m為常數(shù))與y軸的交點(diǎn)為C,M3,0)與N0,﹣2)分別是x軸、y軸上的點(diǎn)

1)當(dāng)m1時(shí),求拋物線頂點(diǎn)坐標(biāo).

2)若3x3+m時(shí),函數(shù)y=﹣x2+4x+m4有最小值﹣7,求m的值.

3)若拋物線與線段MN有公共點(diǎn),直接寫出m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列材料,然后解答問題.

材料:從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線例如:如圖,AD把△ABC分成△ABD與△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割線.

解答下列問題:

1)如圖,在△ABC中,∠B40°,AD是△ABC的完美分割線,且△ABD是以AD為底邊的等腰三角形,則∠CAD   度.

2)在△ABC中,∠B42°,AD是△ABC的完美分割線,且△ABD是等腰三角形,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長交AD于點(diǎn)F,且CFAD

(1) 求證:EOB的中點(diǎn)

(2) AB8,求CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時(shí),測(cè)得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案