已知拋物線與x軸交于點、C,與y軸交于點B(0,3),拋物線的頂點為p。
(1)求拋物線的解析式;
(2)若拋物線向下平移k個單位后經(jīng)過點(-5,6)。
①求k的值及平移后拋物線所對應函數(shù)的最小值;
②設平移后拋物線與y軸交于點D,頂點為Q,點M是平移后的拋物線上的一個動點。請?zhí)骄浚寒旤cM在何處時,△MBD的而積是△MPQ面積的2倍?求出此時點M的坐標。
(1)(2)① ∴對應函數(shù)的最小值是-3. ②∴點M的坐標是  

試題分析:(1)本題考查的是二次函數(shù)的性質(zhì)以及待定系數(shù)法求二次函數(shù)解析式的相關知識,我們要注意根據(jù)已知條件選擇合適的關系式的設法,本題利用一般式,把兩點坐標代入關系式,得到關于b、c的二元一次方程組,解方程組求出b、c的值,關系式便可得出.(2)若拋物線向下平移k個單位,
也就是y值減少k,求出對應的拋物線解析式,再利用公式求出最值.②畫出圖形分三種情況解答.
試題解析:(1)把(-1,0),(0,3)分別代入

∴拋物線的解析式為        
(2)①知平移后拋物線的解析式為
∵拋物線經(jīng)過點(-5,6),
;
                          
∴平移后拋物線的解析式為  
∴對應函數(shù)的最小值是-3              
②由①知,BD=PQ=2,拋物線的對稱軸為直線。

∴△MBD中BD邊上的高是△MPQ中PQ邊上的高的2倍。
設點M的坐標為
a.當點M在直線的左側時,如圖,則有,

,
,
。                 
b.當點M在直線與y軸之間時,則有

                 
c.當點M在y軸右側時,則有
,不合題意。        
∴點M的坐標是  
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點,與y軸交于C點,點D在拋物線上且橫坐標為3.
(1)求tan∠DBC的值;
(2)點P為拋物線上一點,且∠DBP=45°,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,若拋物線Y=X2  改為拋物線Y= X2+BX+C 其他條件不變  求矩形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

請寫出一個開口向下,對稱軸為直線的拋物線的解析式,y=                 .?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,已知二次函數(shù)的解析式是y=ax2+bx(a>0),頂點為A(1,-1).
(1)a=   
(2)若點P在對稱軸右側的二次函數(shù)圖像上運動,連結OP,交對稱軸于點B,點B關于頂點A的對稱點為C,連接PC、OC,求證:∠PCB=∠OCB;
(3)如圖②,將拋物線沿直線y=-x作n次平移(n為正整數(shù),n≤12),頂點分別為A1,A2,…,An,橫坐標依次為1,2,…,n,各拋物線的對稱軸與x軸的交點分別為D1,D2,…,Dn,以線段AnDn為邊向右作正方形AnDnEnFn,是否存在點Fn恰好落在其中的一個拋物線上,若存在,求出所有滿足條件的正方形邊長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=20,BC=10,點P為AB邊上一動點,DP交AC于點Q.
(1)求證:△APQ∽△CDQ;
(2)P點從A點出發(fā)沿AB邊以每秒1個單位的速度向B點移動,移動時間為t秒.
①當t為何值時,DP⊥AC?
②設,寫出y與t之間的函數(shù)解析式,并探究P點運動到第幾秒到第幾秒之間時,y取得最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小明同學將直角三角板直角頂點置于平面直角坐標系的原點O,兩直角邊與拋物線分別相交于A、B兩點.小明發(fā)現(xiàn)交點A、B兩點的連線總經(jīng)過一個固定點,則該點坐標為            

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在矩形ABCD中,AB=2,BC=6,點E為對角線AC的中點,點P在邊BC上,連接PE、PA.當點P在BC上運動時,設BP=x,△APE的周長為y,下列圖象中,能表示y與x的函數(shù)關系的圖象大致是(   )

A. B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

正方形ABCD的邊長為1cm,M、N分別是BC.CD上兩個動點,且始終保持AM⊥MN,當BM=       cm時,四邊形ABCN的面積最大,最大面積為       cm2

查看答案和解析>>

同步練習冊答案