【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在邊CD上,且DE=1.
(1)感知:如圖①,連接AE,過點(diǎn)E作,交BC于點(diǎn)F,連接AF,易證: (不需要證明);
(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過點(diǎn)E ,交BC于點(diǎn)F,連接PF.求證: 相似;
(3)應(yīng)用:如圖③,若EF交AB邊于點(diǎn)F, ,其他條件不變,且的面積是6,則AP的長為____.
【答案】(1)見解析;(2)證明見解析;(3)
【解析】試題分析:
(1)由已知易證∠AED=∠EFC,∠D=∠C=90°,由AD=3,CD=4結(jié)合DE=1可得AD=CE,由此即可證得△AED≌△ECF;
(2)由四邊形ABCD是矩形可得∠D=∠C=90°,結(jié)合∠PEF=90°可證得∠PED=∠EFC,由此即可證得△PDE∽△ECF;
(3)過點(diǎn)F作FH⊥CD于點(diǎn)H,易得四邊形AFHD是矩形,由此可得FH=AD=3,由(2)可得△PDE∽△EHF,由此結(jié)合已知條件可證得EF=3PE,結(jié)合S△PEF=PE·EF=6,即可解得PE=2,由此在Rt△PDE中解得PD=,從而可得AP=AD-PD=.
試題解析:
(1)∵四邊形ABCD是矩形,EF⊥AE,
∴∠C=∠D=∠AEF=90°,
∴∠DAE+∠AED=90°,∠AED+∠CEF=90°,
∴∠DAE=∠CEF,
∵CD=4,DE=1,AD=3,
∴EC=CD-DE=3=AD,
∴△ADE≌△ECF;
(2)同(1)可得:∠D=∠C,∠DPE=∠CEF,
∴△PDE∽△ECF;
(3)如圖3,在矩形ABCD中,過點(diǎn)F作FH⊥CD于點(diǎn)H,
∴∠PHD=∠A=∠D=90°,
∴四邊形AFHD是矩形,
∴FH=AD=3,
由(2)可得△PDE∽△EHF,
∴,
∵DE=1,
∴,即EF=3PE,
∵S△PEF=PE·EF=6,
∴3PE2=12,解得PE=2,
∴在Rt△PDE中,由勾股定理可得:PD=,
∴AP=AD-PD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F分別為AB,BC的中點(diǎn),G是AD 上的任一點(diǎn).計(jì)S1=S△BEF , S2=S△GFC ,S=S□ABCD ,則S=________S2=________S1 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=kx+b(k≠0)與反比例函數(shù)y2=(m≠0)相交于A和B兩點(diǎn),且A點(diǎn)坐標(biāo)為(1,3),B點(diǎn)的橫坐標(biāo)為﹣3.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使得y1>y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲沿周長為300米的環(huán)形跑道上按逆時(shí)針方向跑步,速度為a米/秒,與此同時(shí)在甲后面100米的乙也沿該環(huán)形跑道按逆時(shí)針方向跑步,速度為3米/秒.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若a=5,求甲、乙兩人第1次相遇的時(shí)間;
(2)當(dāng)t=50時(shí),甲、乙兩人第1次相遇.
①求a的值;
②若時(shí),甲、乙兩人第1次相遇前,當(dāng)兩人相距120米時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象與直線y=﹣x+b都經(jīng)過點(diǎn)A(1,4),且該直線與x軸的交點(diǎn)為B.
(1)求反比例函數(shù)和直線的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD//BC, ,BC=4,DC=3,AD=6.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向,在射線DA上以每秒2兩個(gè)單位長的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)的面積為,直接寫出與之間的函數(shù)關(guān)系式是____________(不寫取值范圍).
(2)當(dāng)B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),求出此時(shí)的值.
(3)當(dāng)線段PQ與線段AB相交于點(diǎn)O,且2OA=OB時(shí),直接寫出=_____________.
(4)是否存在時(shí)刻,使得若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校2019學(xué)年舉行席地繪畫大賽.共收到繪畫作品480件,其中的優(yōu)秀作品評出了一、二、三等獎(jiǎng).
占獲獎(jiǎng)總數(shù)的幾分之幾 | 獲獎(jiǎng)作品的件數(shù) | |
一等獎(jiǎng) | b | |
二等獎(jiǎng) | c | |
三等獎(jiǎng) | a | 96 |
(1)則a= ;b= ;c= ;
(2)學(xué)校決定為獲一等獎(jiǎng)同學(xué)每人購買一個(gè)書包,獲得二等獎(jiǎng)同學(xué)每人購買一個(gè)文具盒,獲得三等獎(jiǎng)同學(xué)每人購買一支鋼筆,并且每位獲獎(jiǎng)同學(xué)頒發(fā)一個(gè)證書,已知文具盒單價(jià)是書包單價(jià)的,證書的單價(jià)是文具盒單價(jià)的,鋼筆的單介是文具盒單價(jià)的,學(xué)校購買書包、文具盒、鋼筆共用4000元,那么學(xué)校購買證書共用了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定每月用水18噸以內(nèi)(包括18噸)的用戶,每噸收水費(fèi)a元:一個(gè)月用水超過18噸的用戶,18噸水仍按每噸a元收費(fèi),超過18噸的部分,按每噸b元(ba)收費(fèi).設(shè)一戶居民每月用水x噸,應(yīng)收水費(fèi)y元,y與x之間的函數(shù)關(guān)系如圖;
(1)求a的值,某戶居民上月用水10噸,應(yīng)收水費(fèi)多少元;
(2)求b的值,并寫出當(dāng)x18時(shí),y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為舉辦校園文化藝術(shù)節(jié),甲、乙兩班準(zhǔn)備給合唱同學(xué)購買演出服裝(一人一套),兩班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供貨商給出的演出服裝的價(jià)格表:
購買服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套以上 |
每套服裝的價(jià)格 | 60元 | 50元 | 40元 |
如果兩班單獨(dú)給每位同學(xué)購買一套服裝,那么一共應(yīng)付5020元.
(1)甲、乙兩班聯(lián)合起來給每位同學(xué)購買一套服裝,比單獨(dú)購買可以節(jié)省多少錢?
(2)甲、乙兩班各有多少名同學(xué)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com