【題目】如圖,在矩形ABCD中,AD=10,E為AB上一點(diǎn),且AE= AB=a,連結(jié)DE,F(xiàn)是DE中點(diǎn),連結(jié)BF,以BF為直徑作⊙O.
(1)用a的代數(shù)式表示DE2= , BF2=;
(2)求證:⊙O必過(guò)BC的中點(diǎn);
(3)若⊙O與矩形ABCD各邊所在的直線(xiàn)相切時(shí),求a的值;
(4)作A關(guān)于直線(xiàn)BF的對(duì)稱(chēng)點(diǎn)A′,若A′落在矩形ABCD內(nèi)部(不包括邊界),則a的取值范圍 . (直接寫(xiě)出答案)
【答案】
(1)a2+100,
(2)證明:如圖1,設(shè)⊙O交BC于H,連接FH,
∵BF是⊙O的直徑,
∴∠BHF=90°,
∴∠ABC=∠BHF=∠AGF=90°,
∴四邊形BGFH是矩形,
∴BH=GF= AD= BC,
∴H是BC的中點(diǎn),
即:⊙O必過(guò)BC的中點(diǎn)
(3)解:分兩種情況:
①如圖2,當(dāng)⊙O與邊CD相切時(shí),設(shè)切點(diǎn)為M,連接OM、FH交于N,則OM⊥CD,
∴OM=ON+MN= +5= ,
∵OM⊥FH,
∴NF= FH= × = a,
Rt△ONF中,ON2+NF2=OF2=OM2,
∴ +( )2= ,
a= ,
∵a>0,
∴a= ,
②如圖3,當(dāng)⊙O與邊AD相切時(shí),設(shè)切點(diǎn)為Q,
連接OQ,則OQ⊥AD,連接FG,交OQ于P,
∴OQ=OP+PQ= BG+AG= + = a,
由(1)知: 且BF=2OQ,
∴25+ a2=(2× a)2,
a= ,
綜上所述,若⊙O與矩形ABCD各邊所在的直線(xiàn)相切時(shí),a的值為 或
(4) <a<
【解析】解:(1)如圖1,∵四邊形ABCD是矩形,
∴∠A=90°,
在Rt△AED中,AE=a,AD=10,
由勾股定理得:ED2=AE2+AD2=a2+102=a2+100,
設(shè)⊙O交AB于G,連接FG,
∵BF是⊙O的直徑,
∴∠BGF=90°,
∵∠A=90°,
∴∠BGF=∠A,
∴FG∥AD,
∵F是ED的中點(diǎn),
∴GF= AD=5,EG=AG= a,
∵AE= AB=a,
∴AB=4a,
∴BG=4a﹣ a= a,
由勾股定理得:BF2=BG2+GF2,
∴BF2= +52= +25= ,
所以答案是:a2+100; ;
⑷如圖4,當(dāng)A的對(duì)稱(chēng)點(diǎn)A′恰好在邊BD上時(shí),連接AA′交BF于H,連接AF、A′F,過(guò)F作MN⊥BC,交BC于M,交AD于N,則MN⊥AD,
∵A關(guān)于直線(xiàn)BF的對(duì)稱(chēng)點(diǎn)A′,
∴BF是AA′的垂直平分線(xiàn),
∴AF=A′F,AB=A′B=4a,
由(1)(2)得:FN= a,F(xiàn)M= a,A′M=4a﹣5,AN=5,
由勾股定理得: =(4a﹣5)2+ ,
解得:a1=0(舍),a2= ,
∴當(dāng)a< 時(shí),A′落在矩形ABCD外部(包括邊界),
如圖5,當(dāng)A′落在邊CD上時(shí),連接AA′、A′B,過(guò)F作MG⊥AB,則MG⊥CD,
設(shè)射線(xiàn)BF交AD于N,
易得A′G=AM=DG= a,A′C=3a,
∵BF是AA′的垂直平分線(xiàn),
∴AB=A′B,
則(4a)2=102+(3a)2,
a= ,
∴a的取值范圍是: <a< ,
所以答案是: <a< .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用線(xiàn)段垂直平分線(xiàn)的性質(zhì)和勾股定理的概念的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+mx+2m﹣7的圖象經(jīng)過(guò)點(diǎn)(1,0).
(1)求拋物線(xiàn)的表達(dá)式;
(2)把﹣4<x<1時(shí)的函數(shù)圖象記為H,求此時(shí)函數(shù)y的取值范圍;
(3)在(2)的條件下,將圖象H在x軸下方的部分沿x軸翻折,圖象H的其余部分保持不變,得到一個(gè)新圖象M.若直線(xiàn)y=x+b與圖象M有三個(gè)公共點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a>b,則下列說(shuō)法中,錯(cuò)誤的是( 。
A.a+1>b+1B.a﹣>b﹣
C.2a﹣1>2b﹣1D.﹣5a+1>﹣5b+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【發(fā)現(xiàn)證明】
如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過(guò)證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
(1)【類(lèi)比引申】如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長(zhǎng)線(xiàn)上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫(xiě)出EF、BE、DF之間的數(shù)量關(guān)系,并證明;
(2)【聯(lián)想拓展】如圖4,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在與中,,,,,交于點(diǎn).下列結(jié)論正確的個(gè)數(shù)為()個(gè)
①;②;③;④;⑤.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小蕓設(shè)計(jì)的“作三角形一邊上的高”的尺規(guī)作圖過(guò)程.
已知:△ABC.
求作:△ABC的邊BC上的高AD.
作法:①以點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,
交直線(xiàn)BC于點(diǎn)M,N;
②分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)P;
③作直線(xiàn)AP交BC于點(diǎn)D,則線(xiàn)段AD即為所求△ABC的邊BC上的高.
根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵AM= ,MP= ,
∴AP是線(xiàn)段MN的垂直平分線(xiàn).( )(填推理的依據(jù))
∴AD⊥BC于D,即線(xiàn)段AD為△ABC的邊BC上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 中, , , 是過(guò) 點(diǎn)的一條直線(xiàn)
(1)作 于點(diǎn), 點(diǎn),若點(diǎn)和點(diǎn)在直線(xiàn)的同側(cè),求證: ;
(2)若直線(xiàn)繞點(diǎn)旋轉(zhuǎn)到點(diǎn)和點(diǎn)在其兩側(cè),其余條件不變,問(wèn):的關(guān)系如何?請(qǐng)予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般情況下,不成立,但有些數(shù)可以使得它成立,例如:a=1,b=2.我們稱(chēng)使得成立的一對(duì)數(shù)a,b為“相伴數(shù)對(duì)”,記為(a,b).
(1)判斷數(shù)對(duì)(﹣2,1),(3,3)是否是“相伴數(shù)對(duì)”;
(2)若(k,﹣1)是“相伴數(shù)對(duì)”,求k的值;
(3)若(4,m)是“相伴數(shù)對(duì)”,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)A、B、C都在格點(diǎn)上.
(1)在圖中畫(huà)出與△ABC關(guān)于直線(xiàn)l成軸對(duì)稱(chēng)的△A1B1C1;
(2)在直線(xiàn)l上找出一點(diǎn)P,使得|PA﹣PC|的值最大;(保留作圖痕跡并標(biāo)上字母P)
(3)在直線(xiàn)l上找出一點(diǎn)Q,使得QA+QC1的值最;(保留作圖痕跡并標(biāo)上字母Q)
(4)在正方形網(wǎng)格中存在 個(gè)格點(diǎn),使得該格點(diǎn)與B、C兩點(diǎn)構(gòu)成以BC為底邊的等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com