【題目】如圖,在△ABC中,AB=AC,AD⊥BC于D點,E、F分別為DB、DC的中點,則圖中共有全等三角形對.

【答案】4
【解析】解:∵AD⊥BC,AB=AC
∴D是BC中點
∴BD=DC,
∵AD=AD,
∴△ABD≌△ACD(SSS);
E、F分別是DB、DC的中點
∴BE=ED=DF=FC
∵AD⊥BC,AD=AD,ED=DF
∴△ADF≌△ADE(HL);
∵∠B=∠C,BE=FC,AB=AC
∴△ABE≌△ACF(SAS)
∵EC=BF,AB=AC,AE=AF
∴△ABF≌△ACE(SSS).
∴全等三角形共4對,分別是:△ABD≌△ACD(HL),△ABE≌△ACF(SAS),△ADF≌△ADE(SSS),△ABF≌△ACE(SAS).
故答案為4.
本題重點是根據(jù)已知條件“AB=AC,AD⊥BC交D點,E、F分別是DB、DC的中點”,得出△ABD≌△ACD,然后再由結(jié)論推出AB=AC,BE=DE,CF=DF,從而根據(jù)“SSS”或“SAS”找到更多的全等三角形,要由易到難,不重不漏.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.

(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,當G點在何位置時四邊形AEBD是矩形?請說明理由并求出點H的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線開口向下,且與y軸交于點(01),寫出一個滿足條件的拋物線的解析式:_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2=4x的根是( )

A.4B.x1=x2=4C.x1=-2x2=2D.x1=0,x2=4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.點D在AB邊上,點E是BC邊上一點(不與點B、C重合),且DA=DE,則AD的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只小蟲從某點P出發(fā),在一條直線上來回爬行,假定把向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),則爬行各段路程(單位:厘米)依次為:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.
(1)通過計算說明小蟲是否回到起點P.
(2)如果小蟲爬行的速度為0.5厘米/秒,那么小蟲共爬行了多長時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于A(-1,0)、B兩點, 與y軸交于點C(0,2), 拋物線的對稱軸交x軸于點D.

1)求拋物線的解析式;

2)求sinABC的值;

3)在拋物線的對稱軸上是否存在點P,使PCD是以CD為腰的等腰三角形,如果存在,直接寫出點P的坐標;如果不存在,請說明理由;

4)點E是線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時線段EF最長?求出此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足為D點,AE平分∠BAC,交BD于F,交BC于E,點G為AB的中點,連接DG,交AE于點H,

(1)求∠ACB的度數(shù);
(2)HE= AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點B,C是x軸上的兩個定點,∠ACB=90°,AC=BC,點A(l,3),點P是x軸上的一個動點,點E是AB的中點,在△PEF中,∠PEF=90°,PE=EF

(1)如圖1,當點P與坐標原點重合時:①求證△PCE≌△FBE;②求點F的坐標;
(2)如圖2,當點P在線段CB上時,求證SCPE=SAEF
(3)如圖3,當點P在線段CB的延長線時,若SAEF=4SPBE則此刻點F的坐標為

查看答案和解析>>

同步練習冊答案