【題目】先化簡,后求值:a(a+1)﹣(a+1)(a﹣1),其中a=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實(shí)數(shù)根.比如對于方程,操作步驟是:
第一步:根據(jù)方程的系數(shù)特征,確定一對固定點(diǎn)A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動一個(gè)直角三角板,使一條直角邊恒過點(diǎn)A,另一條直角邊恒過點(diǎn)B;
第三步:在移動過程中,當(dāng)三角板的直角頂點(diǎn)落在x軸上點(diǎn)C處時(shí),點(diǎn)C的橫坐標(biāo)m即為該方程的一個(gè)實(shí)數(shù)根(如圖1);
第四步:調(diào)整三角板直角頂點(diǎn)的位置,當(dāng)它落在x軸上另一點(diǎn)D處時(shí),點(diǎn)D的橫坐標(biāo)n即為該方程的另一個(gè)實(shí)數(shù)根.
(1)在圖2中,按照“第四步”的操作方法作出點(diǎn)D(請保留作出點(diǎn)D時(shí)直角三角板兩條直角邊的痕跡);
(2)結(jié)合圖1,請證明“第三步”操作得到的m就是方程的一個(gè)實(shí)數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個(gè)固定點(diǎn)的位置,若要以此方法找到一元二次方程 (a≠0,≥0)的實(shí)數(shù)根,請你直接寫出一對固定點(diǎn)的坐標(biāo);
(4)實(shí)際上,(3)中的固定點(diǎn)有無數(shù)對,一般地,當(dāng)m1,n1,m2,n2與a,b,c之間滿足怎樣的關(guān)系時(shí),點(diǎn)P(m1,n1),Q(m2,n2)就是符合要求的一對固定點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,AB的垂直平分線交AC于D,△ABC和△DBC的周長分別是30cm和19cm,則△ABC的腰和底邊長分別為( )
A.11cm和8cm
B.8cm和11cm
C.10cm和8cm
D.12cm和6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副含和的三角板和疊合在一起,邊與重合,(如圖1),點(diǎn)為邊的中點(diǎn),邊與相交于點(diǎn),現(xiàn)將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(如圖2),在從到的變化過程中,觀察點(diǎn)的位置變化,點(diǎn)相應(yīng)移動的路徑長為 (結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是的中線,是線段上一點(diǎn)(不與點(diǎn)重合),交于點(diǎn),,連結(jié).
(1)如圖1,當(dāng)點(diǎn)與重合時(shí),求證:四邊形是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)不與重合時(shí),(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長交于點(diǎn),若,且.當(dāng),時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)E,F(xiàn)分別為ABCD的邊BC,AD上的點(diǎn),且∠1=∠2.
求證:AE=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A在y軸正半軸上,點(diǎn)B與點(diǎn)C都在x軸上,且點(diǎn)B在點(diǎn)C的左側(cè),滿足BC=OA.若﹣3am﹣1b2與anb2n﹣2是同類項(xiàng)且OA=m,OB=n,求出m和n的值以及點(diǎn)C的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com