【題目】如圖1,以為直徑作半圓,點(diǎn)在半圓上,連結(jié),,且.連結(jié),邊上的高,過點(diǎn)的延長線于點(diǎn),交于點(diǎn).

1)求證:.

2)當(dāng)的中點(diǎn)時(shí),求的值.

3)如圖2,取的中點(diǎn),連結(jié).

①若,在點(diǎn)運(yùn)動(dòng)過程中,當(dāng)四邊形的其中一邊長是2倍時(shí),求所有滿足條件的.

②連結(jié),當(dāng)的面積是的面積的3倍時(shí),求的值(請(qǐng)直接寫出答案).

12

【答案】1)見解析;(2;(3)①當(dāng)時(shí),四邊形其中一邊長為2倍;②

【解析】

1)先證明 再證明,從而可得結(jié)論;

2)先證明是等邊三角形,再證明,利用銳角三角函數(shù)可得結(jié)論;(3)①分情況討論:i當(dāng),ii當(dāng),iii當(dāng),結(jié)合圖形性質(zhì)可得結(jié)論;②當(dāng)的面積是的面積的3倍時(shí),得到 設(shè) 結(jié)合圖形的性質(zhì)用含的代數(shù)式表示 利用正切的定義可得答案.

解:(1)∵,

.

的直徑,

,且,

.

.

.

2)∵邊上的高,且,

.

.

.

又∵中點(diǎn),且,

.

是等邊三角形,

.

,

3)①i當(dāng),由題意得:

設(shè),則

,得

.

.

ii當(dāng)

設(shè),則.

得,

,化簡,

,(舍)

iii當(dāng)

由于,且

∴不存在

綜上所述,當(dāng)時(shí),四邊形其中一邊長為2.

②如圖,當(dāng)的面積是的面積的3倍時(shí),

設(shè)

的中點(diǎn),

設(shè)

解得: 舍去,

同理可得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mxm<0)交x軸于O,A兩點(diǎn),頂點(diǎn)為點(diǎn)B

1)求△AOB的面積(用含m的代數(shù)式表示);

2)直線y=kx+bk0)過點(diǎn)B,且與拋物線交于另一點(diǎn)D(點(diǎn)D與點(diǎn)A不重合),交y軸于點(diǎn)C.過點(diǎn)CCEABx軸于點(diǎn)E

(。 若∠OBA=90°2<<3,求k的取值范圍;

(ⅱ) 求證:DEy軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在正方形中,,是線段上的一動(dòng)點(diǎn),連接,過點(diǎn)于點(diǎn).為直徑作,當(dāng)點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)時(shí),對(duì)應(yīng)點(diǎn)也隨之運(yùn)動(dòng),則點(diǎn)運(yùn)動(dòng)的路程長度為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)及一次函數(shù),將該二次函數(shù)在軸上方的圖象沿軸翻折到軸下方,圖象的其余部分不變,得到一個(gè)新函數(shù)的圖象(如圖所示),當(dāng)直線與新函數(shù)圖象有4個(gè)交點(diǎn)時(shí),的取值范圍是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),頂點(diǎn)為

()當(dāng)時(shí),求二次函數(shù)的最大值;

()當(dāng)時(shí),點(diǎn)軸上的點(diǎn),,將點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到點(diǎn),點(diǎn)恰好落在該二次函數(shù)的圖象上,求的值;

()是該二次函數(shù)圖象上的一點(diǎn),在()的條件下,連接,,使,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,C90°,AC10,BC16.動(dòng)點(diǎn)P以每秒3個(gè)單位的速度從點(diǎn)A開始向點(diǎn)C移動(dòng),直線l從與AC重合的位置開始,以相同的速度沿CB方向平行移動(dòng),且分別與CB,AB邊交于E,F兩點(diǎn),點(diǎn)P與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)P移動(dòng)到與點(diǎn)C重合時(shí),點(diǎn)P和直線l同時(shí)停止運(yùn)動(dòng).在移動(dòng)過程中,將PEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn),使得點(diǎn)P的對(duì)應(yīng)點(diǎn)M落在直線l上,點(diǎn)F的對(duì)應(yīng)點(diǎn)記為點(diǎn)N,連接BN,當(dāng)BNPE時(shí),t的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A坐標(biāo)為,點(diǎn)B的坐標(biāo)為.將二次函數(shù)的圖象經(jīng)過左(右)平移個(gè)單位再上(下)平移個(gè)單位得到圖象M,使得圖象M的頂點(diǎn)落在線段AB上.下列關(guān)于a,b的取值范圍,敘述正確的是(

A.,B.

C.,D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的中位線,延長,使,連接并延長交于點(diǎn).若,則的周長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)四位數(shù),記千位數(shù)字與個(gè)位數(shù)字之和為,十位數(shù)字與百位數(shù)字之和為,如果,那么稱這個(gè)四位數(shù)為對(duì)稱數(shù)

最小的對(duì)稱數(shù) ;四位數(shù)之和為最大的對(duì)稱數(shù),則的值為

一個(gè)四位的對(duì)稱數(shù),它的百位數(shù)字是千位數(shù)字倍,個(gè)位數(shù)字與十位數(shù)字之和為,且千位數(shù)字使得不等式組恰有個(gè)整數(shù)解,求出所有滿足條件的對(duì)稱數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案